首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11205篇
  免费   515篇
  国内免费   1566篇
化学   12468篇
晶体学   58篇
力学   24篇
综合类   53篇
数学   22篇
物理学   661篇
  2024年   22篇
  2023年   58篇
  2022年   132篇
  2021年   162篇
  2020年   239篇
  2019年   265篇
  2018年   244篇
  2017年   314篇
  2016年   411篇
  2015年   312篇
  2014年   405篇
  2013年   1071篇
  2012年   504篇
  2011年   535篇
  2010年   513篇
  2009年   538篇
  2008年   604篇
  2007年   604篇
  2006年   622篇
  2005年   667篇
  2004年   637篇
  2003年   544篇
  2002年   546篇
  2001年   390篇
  2000年   384篇
  1999年   322篇
  1998年   338篇
  1997年   297篇
  1996年   301篇
  1995年   278篇
  1994年   265篇
  1993年   230篇
  1992年   188篇
  1991年   96篇
  1990年   51篇
  1989年   56篇
  1988年   29篇
  1987年   26篇
  1986年   23篇
  1985年   9篇
  1984年   26篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Poly(ortho‐phenylene ethynylene)s (PoPEs) have been synthesized via an in situ activation/coupling AB′ polycondensation protocol. The resulting polymers have been characterized by several analytical methods and are shown to have no structural defects. Although the Sonogashira–Hagihara polycondensation reaction is less efficient than for the preparation of the corresponding meta‐ and para‐linked polymers, presumably because of steric hindrance caused by the ortho substituents, the process can be accelerated by the use of microwave irradiation. Optical spectroscopy indicates solvent‐dependent conformational changes between extended transoid and helical cisoid conformations, providing the first experimental evidence for solvophobically driven folding of the PoPE backbone. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1619–1627, 2006  相似文献   
82.
The direct preparation of grafting polymer brushes from commercial poly (vinylidene fluoride) (PVDF) films with surface‐initiated atom transfer radical polymerization (ATRP) is demonstrated. The direct initiation of the secondary fluorinated site of PVDF facilitated grafting of the hydrophilic monomers from the PVDF surface. Homopolymer brushes of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the PVDF surface. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance/Fourier transform infrared spectroscopy, and atomic force microscopy. A kinetic study revealed a linear increase in the graft concentration of poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) with the reaction time, indicating that the chain growth from the surface was consistent with a controlled or living process. The living chain ends were used as macroinitiators for the synthesis of diblock copolymer brushes. The water contact angles on PVDF films were reduced by the surface grafting of DMAEMA and PEGMA. Protein adsorption experiments revealed a substantial antifouling property of PPEGMA‐grafted PVDF films and PDMAEMA‐grafted PVDF films in comparison with the pristine PVDF surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3434–3443, 2006  相似文献   
83.
Well‐defined polystyrene‐ (PSt) or poly(ε‐caprolactone) (PCL)‐based polymers containing mid‐ or end‐chain 2,5 or 3,5‐ dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP) or ring opening polymerization (ROP). 1,4‐Dibromo‐2‐(bromomethyl)benzene, 1,3‐dibromo‐5‐(bromomethyl)benzene, and 1,4‐dibromo‐2,5‐di(bromomethyl)benzene were used as initiators in ATRP of styrene (St) in conjunction with CuBr/2,2′‐bipyridine as catalyst. 2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene initiated the ROP of ε‐caprolactone (CL) in the presence of stannous octoate (Sn(Oct)2) catalyst. The reaction of these polymers with amino‐ or aldehyde‐functionalized monoboronic acids, in Suzuki‐type couplings, afforded the corresponding telechelics. Further functionalization with oxidable groups such as 2‐pyrrolyl or 1‐naphthyl was attained by condensation reactions of the amino or aldehyde groups with low molecular weight aldehydes or amines, respectively, with the formation of azomethine linkages. Preliminary attempts for the synthesis of fully conjugated poly(Schiff base) with polymeric segments as substituents, by oxidative polymerization of the macromonomers, are presented. All the starting, intermediate, or final polymers were structurally analyzed by spectral methods (1H NMR, 13C NMR, and IR). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 727–743, 2006  相似文献   
84.
Poly(amic acid)s (PAAs) having the high solution stability and transmittance at 365 nm for photosensitive polyimides have been developed. PAAs with a twisted conformation in the main chains were prepared from 2,2′,6,6′‐biphenyltetracarboxylic dianhydride (2,2′,6,6′‐BPDA) and aromatic diamines. Imidization of PAAs was achieved by chemical treatment using trifluoroacetic anhydride. Among them, the PAA derived from 2,2′,6,6′‐BPDA and 4,4′‐(1,3‐phenylenedioxy)dianiline was converted to the polyimide by thermal treatment. The heating at 300 °C under nitrogen did not complete thermal imidization of PAAs having glass‐transition temperatures (Tg)s higher than 300 °C to the corresponding PIs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6385–6393, 2006  相似文献   
85.
Poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐2,8‐vinylene) (PS) and poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐5,5‐dioxide‐2,8‐ vinylene) (PSO) as well as corresponding model compounds were synthesized by Heck coupling. Both the polymers and model compounds were readily soluble in common organic solvents such as tetrahydrofuran, dichloromethane, chloroform, and toluene. The polymers showed a decomposition temperature at ~430 °C and a char yield of about 65% at 800 °C in N2. The glass‐transition temperatures of the polymers were almost identical (75–77 °C) and higher than those of the model compounds (26–45 °C). All samples absorbed around 390 nm, and their optical band gaps were 2.69–2.85 eV. They behaved as blue‐greenish light emitting materials in both solutions and thin films, with photoluminescence emission maxima at 450–483 nm and photoluminescence quantum yields of 0.52–0.72 in solution. Organic light‐emitting diodes with an indium tin oxide/poly(ethylene dioxythiophene):poly(styrene sulfonic acid)/polymer/Mg:Ag/Ag configuration with polymers PS and PSO as emitting layers showed green electroluminescence with maxima at 530 and 540 nm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6790–6800, 2006  相似文献   
86.
New fluorinated, polyfunctional propenyl ether functionalized resins were synthesized, and their behavior in cationic photopolymerization was investigated. The photopolymerization proceeded efficiently with a high double‐bond conversion (>90%), giving rise to UV‐cured coatings characterized by low glass‐transition temperatures (?33 °C ≤ glass‐transition temperature ≤ ?15 °C) and hydrophobic surface properties. A fluorinated additive was also employed as a reactive additive in the cationic photopolymerization of trimethylolpropane tripropenyl ether, increasing the double‐bond conversion, polymer network flexibility, thermal stability, and surface hydrophobicity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6943–6951, 2006  相似文献   
87.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   
88.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   
89.
Novel multiblock poly(ester amide)s containing poly(L ‐lactide) and cycloaliphatic amide segments were synthesized from telechelic oligomer of α,ω‐hydroxyl terminated poly(L ‐lactide), 1,3‐cyclohexylbis(methylamine), and sebacoylchloride by the “two‐step” interfacial polycondensation method. The blocky nature of PEAs was established by FTIR and 1H NMR spectroscopies. The effect of relative content of ester and amide segments on the crystallization nature of PEAs was investigated by WAXD and DSC analyses. PEAs having lower content of PLLA, PEA 1 and PEA 2, showed a crystallization pattern analogous to polyamides, whereas PEA 3, having higher content of PLLA, showed two crystalline phases characterized by polyester and polyamide segments. Random nature of PEAs was observed from single Tg values. Biodegradation studies using the enzyme lipase from Candida Cylindracea showed higher degradation rate for PEA 3 than that for PEA 1 and PEA 2. FTIR, 1H NMR, and DSC analyses of the degraded products indicated the involvement of ester linkages in the degradation process. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3250–3260, 2006  相似文献   
90.
A series of chiral polymers based on poly(N‐acryl) amino acids was synthesized using a convergent synthetic approach. These chiral polymers have been used as chiral additives to induce enantioselective crystallization of racemic or conglomerate amino acids in solutions. These polymeric additives showed strong capabilities to enhance highly enantioselective resolution during the crystallization of amino acids. In addition, these polymers caused unusual modifications of amino acid crystal morphologies. Furthermore, spherical microparticles of those same chiral polymers were also shown active in similar chiral discriminations during amino acid crystallizations occurring on microparticle surfaces. Our study demonstrates the high potential of chiral polymers and microparticles to resolve amino acids throughout crystallization processes. High enantiomeric excesses in one targeted enantiomer of amino acids can also be maximized via time‐dependent kinetic control of crystallizations. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3009–3017, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号