首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109470篇
  免费   5872篇
  国内免费   15526篇
化学   93145篇
晶体学   1377篇
力学   2390篇
综合类   1044篇
数学   12712篇
物理学   20200篇
  2024年   106篇
  2023年   829篇
  2022年   1985篇
  2021年   2395篇
  2020年   2771篇
  2019年   2755篇
  2018年   2357篇
  2017年   3301篇
  2016年   3555篇
  2015年   3058篇
  2014年   4112篇
  2013年   8354篇
  2012年   7512篇
  2011年   6036篇
  2010年   5133篇
  2009年   6912篇
  2008年   7123篇
  2007年   7489篇
  2006年   6819篇
  2005年   5881篇
  2004年   5467篇
  2003年   4542篇
  2002年   5578篇
  2001年   3371篇
  2000年   3155篇
  1999年   2871篇
  1998年   2494篇
  1997年   2041篇
  1996年   1768篇
  1995年   1667篇
  1994年   1479篇
  1993年   1213篇
  1992年   1185篇
  1991年   803篇
  1990年   676篇
  1989年   662篇
  1988年   476篇
  1987年   362篇
  1986年   328篇
  1985年   267篇
  1984年   279篇
  1983年   159篇
  1982年   245篇
  1981年   199篇
  1980年   213篇
  1979年   201篇
  1978年   188篇
  1977年   126篇
  1976年   111篇
  1973年   71篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
A series of sulfonated poly(aryl ether ether ketone ketone)s statistical copolymers with high molecular weights were synthesized via an aromatic nucleophilic substitution polymerization. The sulfonation content (SC), defined as the number of sulfonic acid groups contained in an average repeat unit, could be controlled by the feed ratios of monomers. Flexible and strong membranes in sodium sulfonate form could be prepared by the solution casting method, and readily transformed to their proton forms by treating them in 2 N sulfuric acid. The polymers showed high Tgs, which increased with an increase in SC. Membranes prepared from the present sulfonated poly(ether ether ketone ketone) copolymers containing the hexafluoroisopropylidene moiety (SPEEKK‐6F) and copolymers containing the pendant 3,5‐ditrifluoromethylphenyl moiety (SPEEKK‐6FP) had lower water uptakes and lower swelling ratios in comparison with previously prepared copolymers containing 6F units. All of the polymers possessed proton conductivities higher than 1 × 10?2 S/cm at room temperature, and proton conductivity values of several polymers were comparable to that of Nafion at high relative humidity. Their thermal stability, oxidative stability, and mechanical properties were also evaluated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2299–2310, 2006  相似文献   
952.
953.
In this study, the viscoelastic phase separation process was studied further by time‐resolved light scattering, differential scanning calorimetry, and scanning electron microscopy in the system of poly(ether imide)‐modified bisphenol‐A dicyanate. It was observed that the evolution time of phase structure and relaxation time of diffusion flow of the bisphenol‐A dicyanate were similar with the phase diagram of curing conversion versus content of PEI. The results suggested that the viscoelastic phase separation was affected by the curing conversion of the system at the onset point of phase separation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 517–523, 2006  相似文献   
954.
A series of acrylic impact modifiers (AIMs) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle–ductile transition of impact‐modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 °C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle–ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2–341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle–ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle–ductile transition for the PVC/AIM blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 696–702, 2006  相似文献   
955.
Polycarbonate (PC) was melt blended with small amount of liquid‐crystalline polymer (LCP) and various contents of glass beads (GB) having different diameters. The rheological measurements indicated that the GB addition increased the viscosity ratio and seemed unfavorable to the LCP fibrillation. However, the morphological observation showed that the LCP fibrillation was promoted by the GB addition and varied with the GB packing. With the increased GB packing by increasing the GB content and/or decreasing the GB diameter, LCP deformed from spheres and ellipsoids into stretched ellipsoids at lower shear rates and into long fibrils at higher shear rates. Although higher content of smaller GB jammed into the larger LCP droplets and inhibited the LCP fibrillation, very long LCP fibrils formed at higher shear rates at a high enough packing of GB. The relationship between GB packing and LCP fibrillation revealed two kinds of hydrodynamic effects of GB promoting the LCP fibrillation: at lower GB packing, the shear flow was enhanced by the high local shear between GB, in quantity; and for a high enough GB packing, the shear flow was changed, in quality, into elongational flow, which was more effective for the LCP fibrillation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1020–1030, 2006  相似文献   
956.
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006  相似文献   
957.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   
958.
959.
960.
Rebuilding of metal components with laser cladding forming   总被引:4,自引:0,他引:4  
Laser cladding forming (LCF) is a novel powerful tool for the repairing of metal components. Rebuilding of V-grooves on medium carbon steel substrates has been carried out with laser cladding forming technique using stainless steel powder as the cladding material. Microstructure of the deposited layers has been characterized using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDAX), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Mechanical properties of the rebuilt V-groove samples have been evaluated by tensile and impacting tests and microhardness measurement. Experimental results show that good fusion bonding between the rebuilt layers and the substrate has been formed, and the microstructure of the cladding layers is mainly composed of fine, dense and defect-free epitaxial columnar dendrites. Due to the effect of grain size refinement, the tensile strength, impacting toughness, elongation and microhardness of the rebuilt samples have been greatly enhanced compared to those of the substrate. Microhardness is also very uniform throughout the rebuilt regions. With the growth of the deposited layers, the microhardness increases gradually. The good ductility of the deposited regions is verified by the SEM fracture analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号