首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109564篇
  免费   5869篇
  国内免费   15528篇
化学   93231篇
晶体学   1377篇
力学   2390篇
综合类   1044篇
数学   12712篇
物理学   20207篇
  2024年   108篇
  2023年   829篇
  2022年   2076篇
  2021年   2395篇
  2020年   2771篇
  2019年   2755篇
  2018年   2357篇
  2017年   3301篇
  2016年   3555篇
  2015年   3058篇
  2014年   4112篇
  2013年   8354篇
  2012年   7512篇
  2011年   6036篇
  2010年   5133篇
  2009年   6912篇
  2008年   7123篇
  2007年   7489篇
  2006年   6819篇
  2005年   5881篇
  2004年   5467篇
  2003年   4542篇
  2002年   5578篇
  2001年   3371篇
  2000年   3155篇
  1999年   2871篇
  1998年   2494篇
  1997年   2041篇
  1996年   1768篇
  1995年   1667篇
  1994年   1479篇
  1993年   1213篇
  1992年   1185篇
  1991年   803篇
  1990年   676篇
  1989年   662篇
  1988年   476篇
  1987年   362篇
  1986年   328篇
  1985年   267篇
  1984年   279篇
  1983年   159篇
  1982年   245篇
  1981年   199篇
  1980年   213篇
  1979年   201篇
  1978年   188篇
  1977年   126篇
  1976年   111篇
  1973年   71篇
排序方式: 共有10000条查询结果,搜索用时 217 毫秒
921.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   
922.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   
923.
Poly(ortho‐phenylene ethynylene)s (PoPEs) have been synthesized via an in situ activation/coupling AB′ polycondensation protocol. The resulting polymers have been characterized by several analytical methods and are shown to have no structural defects. Although the Sonogashira–Hagihara polycondensation reaction is less efficient than for the preparation of the corresponding meta‐ and para‐linked polymers, presumably because of steric hindrance caused by the ortho substituents, the process can be accelerated by the use of microwave irradiation. Optical spectroscopy indicates solvent‐dependent conformational changes between extended transoid and helical cisoid conformations, providing the first experimental evidence for solvophobically driven folding of the PoPE backbone. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1619–1627, 2006  相似文献   
924.
The direct preparation of grafting polymer brushes from commercial poly (vinylidene fluoride) (PVDF) films with surface‐initiated atom transfer radical polymerization (ATRP) is demonstrated. The direct initiation of the secondary fluorinated site of PVDF facilitated grafting of the hydrophilic monomers from the PVDF surface. Homopolymer brushes of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the PVDF surface. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance/Fourier transform infrared spectroscopy, and atomic force microscopy. A kinetic study revealed a linear increase in the graft concentration of poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) with the reaction time, indicating that the chain growth from the surface was consistent with a controlled or living process. The living chain ends were used as macroinitiators for the synthesis of diblock copolymer brushes. The water contact angles on PVDF films were reduced by the surface grafting of DMAEMA and PEGMA. Protein adsorption experiments revealed a substantial antifouling property of PPEGMA‐grafted PVDF films and PDMAEMA‐grafted PVDF films in comparison with the pristine PVDF surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3434–3443, 2006  相似文献   
925.
Uracil‐derivatized monomer 6‐undecyl‐1‐(4‐vinylbenzyl)uracil and diaminopyrimidine‐derivatized monomer 2,6‐dioctanoylamido‐4‐methacryloyloxypyrimidine (DMP) were synthesized and polymerized by atom transfer radical polymerization (ATRP). A well‐defined, highly soluble, uracil‐containing polymer, poly[6‐undecyl‐1‐(4‐vinylbenzyl)uracil] (PUVU), was prepared in dioxane at 90 °C with CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine as the catalyst and methyl α‐bromophenylacetate as the initiator. PUVU was further used as a template for the ATRP of DMP. The enhanced apparent rate constant of the DMP polymerization in the presence of PUVU indicated that the ATRP of DMP occurred along the PUVU template. The template polymerization produced a stable and insoluble macromolecular complex, PUVU/poly(2,6‐dioctanoylamido‐4‐methacryloyloxypyrimidine). An X‐ray diffraction study confirmed that the complex had strandlike domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6607–6615, 2006  相似文献   
926.
927.
Well‐defined polystyrene‐ (PSt) or poly(ε‐caprolactone) (PCL)‐based polymers containing mid‐ or end‐chain 2,5 or 3,5‐ dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP) or ring opening polymerization (ROP). 1,4‐Dibromo‐2‐(bromomethyl)benzene, 1,3‐dibromo‐5‐(bromomethyl)benzene, and 1,4‐dibromo‐2,5‐di(bromomethyl)benzene were used as initiators in ATRP of styrene (St) in conjunction with CuBr/2,2′‐bipyridine as catalyst. 2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene initiated the ROP of ε‐caprolactone (CL) in the presence of stannous octoate (Sn(Oct)2) catalyst. The reaction of these polymers with amino‐ or aldehyde‐functionalized monoboronic acids, in Suzuki‐type couplings, afforded the corresponding telechelics. Further functionalization with oxidable groups such as 2‐pyrrolyl or 1‐naphthyl was attained by condensation reactions of the amino or aldehyde groups with low molecular weight aldehydes or amines, respectively, with the formation of azomethine linkages. Preliminary attempts for the synthesis of fully conjugated poly(Schiff base) with polymeric segments as substituents, by oxidative polymerization of the macromonomers, are presented. All the starting, intermediate, or final polymers were structurally analyzed by spectral methods (1H NMR, 13C NMR, and IR). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 727–743, 2006  相似文献   
928.
Poly(amic acid)s (PAAs) having the high solution stability and transmittance at 365 nm for photosensitive polyimides have been developed. PAAs with a twisted conformation in the main chains were prepared from 2,2′,6,6′‐biphenyltetracarboxylic dianhydride (2,2′,6,6′‐BPDA) and aromatic diamines. Imidization of PAAs was achieved by chemical treatment using trifluoroacetic anhydride. Among them, the PAA derived from 2,2′,6,6′‐BPDA and 4,4′‐(1,3‐phenylenedioxy)dianiline was converted to the polyimide by thermal treatment. The heating at 300 °C under nitrogen did not complete thermal imidization of PAAs having glass‐transition temperatures (Tg)s higher than 300 °C to the corresponding PIs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6385–6393, 2006  相似文献   
929.
We fabricated a micrometer‐long supramolecular chain in which π‐conjugated polyrotaxane was coupled. A new experimental setup was designed and constructed, and the simultaneous direct imaging of the structure and fluorescent function was achieved. Furthermore, we identified the formation of a polymer intertwined network and observed novel fluorescence due to a long‐range interaction via this intertwined network over a distance of 5 μm or more without quenching over 15 min in the near field. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 801–809, 2006  相似文献   
930.
The copper‐mediated atom transfer radical polymerization of methyl methacrylate (MMA) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied to simultaneously control the molecular weight and tacticity. The polymerization using tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as a ligand was performed even at ?78°C with a number‐average molecular weight (Mn) of 13,400 and a polydispersity (weight‐average molecular weight/number‐average molecular weight) of 1.31, although the measured Mn's were much higher than the theoretical ones. The addition of copper(II) bromide (CuBr2) apparently affected the early stage of the polymerization; that is, the polymerization could proceed in a controlled manner under the condition of [MMA]0/[methyl α‐bromoisobutyrate]0/[CuBr]0/[CuBr2]0/[Me6TREN]0 = 200/1/1/0.2/1.2 at ?20°C with an MMA/HFIP ratio of 1/4 (v/v). For the field desorption mass spectrum of CuIBr/Me6TREN in HFIP, there were [Cu(Me6TREN)Br]+ and [Cu(Me6TREN)OCH(CF3)2]+, indicating that HFIP should coordinate to the CuI/Me6TREN complex. The syndiotacticity of the obtained poly(methyl methacrylate)s increased with the decreasing polymerization temperature; the racemo content was 84% for ?78°C, 77% for ?30°C, 75% for ?20°C, and 63% for 30°C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1436–1446, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号