全文获取类型
收费全文 | 264篇 |
免费 | 6篇 |
国内免费 | 41篇 |
专业分类
化学 | 288篇 |
晶体学 | 1篇 |
综合类 | 3篇 |
物理学 | 19篇 |
出版年
2023年 | 1篇 |
2022年 | 7篇 |
2021年 | 4篇 |
2020年 | 9篇 |
2019年 | 9篇 |
2018年 | 10篇 |
2017年 | 22篇 |
2016年 | 11篇 |
2015年 | 16篇 |
2014年 | 14篇 |
2013年 | 23篇 |
2012年 | 31篇 |
2011年 | 15篇 |
2010年 | 15篇 |
2009年 | 12篇 |
2008年 | 15篇 |
2007年 | 19篇 |
2006年 | 15篇 |
2005年 | 13篇 |
2004年 | 6篇 |
2003年 | 5篇 |
2002年 | 8篇 |
2001年 | 3篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 6篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1992年 | 3篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 1篇 |
排序方式: 共有311条查询结果,搜索用时 15 毫秒
21.
应用响应面法辅助分析塑料瓶装饮用水中邻苯二甲酸二(2-乙基己基)酯(DEHP)的迁移,建立了一种快速、简便、环保的痕量塑化剂类污染物检测方法。在盐析作用下,使用正己烷涡旋萃取,经氮气浓缩后进行高效液相色谱-紫外检测。响应面最优分析法考察了盐量、涡旋时间和萃取液体积3个因素作为萃取条件对DEHP回收率的影响,得到最佳萃取条件:盐量为16 g/L、涡旋时间为90 s、萃取液体积为5.28 mL。在此实验条件下,DEHP的最大理论回收率为92.91%,实验验证值为92.97%,与理论值相差0.06%。本方法检出限为0.006 mg/L,满足中国国家标准规定的生活饮用水安全标准要求(0.008 mg/L),在0.01~15 mg/L范围内线性关系良好(相关系数R=0.9996)。选取常见市售饮用水样品进行分析,研究了塑料包装饮用水中痕量DEHP迁移的规律。与传统的优化方法相比,响应面模型分析法综合考虑了各因素的影响,而且更加简便、低成本、对环境友好,是实现样品中微痕量污染物精准检测的重要辅助手段。 相似文献
22.
23.
Mesoporous material as catalyst for the production of fine chemical: Synthesis of dimethyl phthalate assisted by hydrophobic nature MCM-41 总被引:1,自引:0,他引:1
Seshachalam Udayakumar Arumugam Pandurangan Predeep Kumar Sinha 《Journal of molecular catalysis. A, Chemical》2005,240(1-2):139-154
Aluminum, iron and zinc containing MCM-41 molecular sieves were prepared by the hydrothermal method. The catalyst was characterized by the XRD, BET (surface area), FT–IR and 29Si, 27Al MAS–NMR techniques. The catalytic activity of these molecular sieves was tested with esterification reaction used with phthalic anhydride (PAH) and methanol (MeOH) in the autoclave at 135 °C, 150 °C and 175 °C. Conversion increases with an increase in temperature and mole ratio. The activity of these catalysts followed the order: Al-MCM-41 (112) > Fe-MCM-41 (115) > Al-MCM-41 (70) > Al-MCM-41 (52) > Fe-MCM-41 (61) > Al, Zn-MCM-41 (104) > Al-MCM-41 (30). The reaction yielded both monomethyl phthalate (MMP) and dimethyl phthalate (DMP). The nature of the catalyst sites has been proposed using with water as an impurity. The selectivity of the dimethyl phthalate increases with increase in temperature and mole ratio. The weight of the catalyst was optimized at 0.07 g. The hydrophilic and hydrophobic nature of the catalyst has been explained by the influence of water and the external surface acidity also facilitates the reaction and this has been confirmed by the supporting reaction. 相似文献
24.
Bioassay‐guided isolation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme by high‐speed counter‐current chromatography 下载免费PDF全文
Miao Wang Xinfeng Guo Haoquan Li Yi Wang Hong Guo Yi Yang Jing Tian 《Journal of separation science》2016,39(22):4408-4414
A rapid and efficient method using high‐speed counter‐current chromatography was established for the bioassay‐guided separation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme. Under the bioassay guidance, the ethyl acetate extract with the best IC50 value of 0.37 ± 0.07 μg/mL exhibited a potential protein tyrosine phosphatase 1B inhibitory activity, which was further separated by high‐speed counter‐current chromatography. The separation was performed with a two‐phase solvent system composed of n‐hexane/methanol/water (5:4:1, v/v). As a result, dibutyl phthalate (19.7 mg) with the purity of 95.3% was obtained from 200 mg of the ethyl acetate extract. Its IC50 was 14.05 ± 0.06 μM, which was further explained by molecular docking. The result of molecular docking showed that dibutyl phthalate enfolded in the catalytic site of protein tyrosine phosphatase 1B. The main force between dibutyl phthalate and protein tyrosine phosphatase 1B was the hydrogen bond interaction with Gln266. In addition, hydrogen bond, van der Waals force and hydrophobic interaction with the amino acids (Ala217, Ile219, and Gly220) were also responsible for the stable protein‐ligand complex. 相似文献
25.
以邻苯二甲酸二苄酯(DBz P)为模板,以Stber和"种子生长法"相结合获得的二氧化硅微球为载体,采用表面印迹技术成功制备了纳米印迹壳层(MIPs)。采用红外光谱与扫描电镜对其结构和形貌进行表征,同时进行了一系列的吸附性能实验,结果表明,MIPs达到平衡吸附的时间约为30 min,吸附行为符合伪二级动力学。等温吸附实验结果表明,室温条件下MIPs的最大吸附量达47.35 mg/g。对不同温度条件下的等温实验数据进行拟合发现,Langmuir模型与实验数据的吻合度比Freundlich模型更高;Scatchard拟合结果证实该印迹壳层仅含1种结合位点,且印迹位点为均相分布。选择性吸附实验表明MIPs对DBz P的吸附明显高于其他结构类似物。MIPs经10次循环吸附后,吸附效率为83%,表明MIPs具有较长的使用寿命。采用超高效液相色谱(UPLC)技术,以MIPs为吸附剂提取食品包装材料中的DBzP,其加标回收率为88.8%~93.1%,相对标准偏差低于6%。MIPs可作为食品及其包装材料中DBz P提取的备选材料。 相似文献
26.
表面接枝法制备磁性邻苯二甲酸二丁酯印迹聚合物及其识别性能研究 总被引:1,自引:0,他引:1
采用表面接枝法对四氧化三铁纳米粒子表面进行功能化修饰,以二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,成功制备了对邻苯二甲酸二丁酯(DBP)具有特异识别性能的磁性表面印迹聚合物(MMIPs).利用扫描电镜、透射电镜、振动样品磁强计、元素分析、红外光谱等对其进行表征.BET测试结果表明,MMIPs的比表面积(380 m2/g)大于MNIPs(324 m2/g).吸附动力学、等温线模型分析显示,MMIPs对DBP的Sips等温线模型相关系数R2=0.999,动力学Pseudo-second-order 模型相关系数(R2)为0.9797.对邻苯二甲酸二烯丙酯(DAP)、DBP和邻苯二甲酸二(2-乙基己基)酯(DEHP)的印迹因子分别为1.53、2.21和1.39,对DBP具有较高的印迹因子和较好的识别性能.磁性分子印迹聚合物经5次再生后,对DBP的吸附能力仅下降了12.3%,表明再生循环效果较好. 相似文献
27.
《Journal of separation science》2017,40(2):506-513
A simple one‐pot approach based on molecularly imprinted polymer shells dispersed on the surface of silica for simultaneous determination of rhodamine B and dibenzyl phthalate (DBzP) has been developed. Highly dense molecularly imprinted polymer shells were formed in the mixture of acetonitrile and toluene by the copolymerization of methacrylic acid and ethylene glycol dimethacrylate, as well as two templates, rhodamine B and dibenzyl phthalate, directed by the vinyl end groups functional monolayer at surface silica microspheres after 3‐methacryloxypropyl trimethoxysilane modification. The obtained imprinted polymer shells showed large average pore diameter (102.5 nm) and about 100 nm shell thickness. The imprinted particles also showed high imprinting factor (αRhB = 3.52 and αDBzP = 3.94), rapid binding kinetics, and excellent selective affinity capacity for rhodamine B and dibenzyl phthalate containing another three competitors in mixed solution. Moreover, the imprinted particles coupled with ultra high performance liquid chromatography was successfully applied to simultaneous analysis of rhodamine B and dibenzyl phthalate in two spiked beverage samples with average recoveries in the range of 88.0−93.0% for rhodamine B and 84.0–92.0% for dibenzyl phthalate with the relative standard deviation lower than 5.1%. 相似文献
28.
《Journal of separation science》2017,40(7):1621-1628
Magnetic molecularly imprinted polymer nanoparticles for di‐(2‐ethylhexyl) phthalate were synthesized by surface imprinting technology with a sol–gel process and used for the selective and rapid adsorption and removal of di‐(2‐ethylhexyl) phthalate from aqueous solution. The prepared magnetic molecularly imprinted polymer nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The adsorption of di‐(2‐ethylhexyl) phthalate onto the magnetic molecularly imprinted polymer was spontaneous and endothermic. The adsorption equilibrium was achieved within 1 h, the maximum adsorption capacity was 30.7 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer displayed a good adsorption selectivity for di‐(2‐ethylhexyl) phthalate with respect to dibutyl phthalate and di‐n‐octyl phthalate. The reusability of magnetic molecularly imprinted polymer was demonstrated for at least eight repeated cycles without significant loss in adsorption capacity. The adsorption efficiencies of the magnetic molecularly imprinted polymer toward di‐(2‐ethylhexyl) phthalate in real water samples were in the range of 98–100%. These results indicated that the prepared adsorbent could be used as an efficient and cost‐effective material for the removal of di‐(2‐ethylhexyl) phthalate from environmental water samples. 相似文献
29.
《Journal of separation science》2017,40(22):4403-4410
A new method was developed for the trace determination of phthalic acid esters in plasma using dispersive liquid–liquid microextraction and gas chromatography with mass spectrometry analysis. Plasma proteins were efficiently precipitated by trichloroacetic acid and then a mixture of chlorobenzene (as extraction solvent) and acetonitrile (as dispersive solvent) rapidly injected to clear supernatant using a syringe. After centrifuging, chlorobenzene sedimented at the bottom of the test tube. 1 μL of this sedimented phase was injected into the gas chromatograph for phthalic acid esters analysis. Different factors affecting the extraction performance, such as the type of extraction and dispersive solvent, their volume, extraction time, and the effects of salt addition were investigated and optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were satisfactory and ranged between 820–1020 and 91–97%, respectively. The linear range was wide (50–1000 ng/mL) and limit of detection was very low (1.5–2.5 ng/mL for all analytes). The relative standard deviations for analysis of 1 μg/mL of the analytes were between 3.2–6.1%. Salt addition showed no significant effect on extraction recovery. Finally, the proposed method was successfully utilized for the extraction and determination of the phthalic acid esters in human plasma samples and satisfactory results were obtained. 相似文献
30.
A new method for total organic carbon (TOC) measurement was established based on supercritical Fenton oxidation. The organic pollutants in wastewater were oxidized to carbon dioxide in supercritical water by Fenton reagents that was detected using a nondispersive infrared detector. The influence of temperature from 380 to 480°C, oxidant coefficient from 1 to 20, pH from 2.2 to 5.2, and Fe2+ concentration from 0.2 to 0.8?mg?L?1 was characterized; the optimal conditions were at 420°C, an oxidant coefficient n?≥?5, a pH of 4.4, and Fe2+ concentration of 0.8?mg?L?1. Using these parameters, the recovery of potassium hydrogen phthalate exceeded 98.2%. The introduction of Fenton oxidation based on supercritical water lowered the temperature and reduced the oxidant coefficient required for TOC determination. 相似文献