首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   69篇
  国内免费   9篇
化学   218篇
晶体学   1篇
数学   1篇
物理学   69篇
  2023年   2篇
  2022年   14篇
  2021年   16篇
  2020年   16篇
  2019年   23篇
  2018年   12篇
  2017年   20篇
  2016年   28篇
  2015年   16篇
  2014年   38篇
  2013年   29篇
  2012年   21篇
  2011年   25篇
  2010年   11篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2001年   2篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
61.
62.
A simple azulene‐containing squaraine dye ( AzUSQ ) showing bandgap of 1.38 eV and hole mobility up to 1.25×10?4 cm2 V?1 s?1 was synthesized. With its low bandgap, an organic photovoltaic (OPV) device based on it has been made that exhibits an impressive open‐circuit voltages (Voc) of 0.80 V. Hence, azulene might be a promising structural unit to construct OPV materials with simultaneous low bandgap, high hole mobility and high Voc.  相似文献   
63.
A series of 6H‐phenanthro[1,10,9,8‐cdefg]carbazole (PC) and benzothiadiazole (BT) based donor–acceptor (D‐A) random copolymers PPC‐T‐BT_3/1, PPC‐T‐BT_2/1, PPC‐T‐BT_1/1, PPC‐T‐BT_1/2, and PPC‐T‐BT_1/3 were easily prepared by varying the molar ratio of PC to BT from 3:1, 2:1, 1:1, 1:2, to 1:3, respectively. The corresponding alternating D‐A copolymer poly{6H‐phenanthro[1,10,9,8‐cdefg]carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole} (PPCDTBT) was also synthesized for comparison. Compared with PPCDTBT, PPC‐T‐BT_1/1, PPC‐T‐BT_1/2, and PPC‐T‐BT_1/3 obtained more pronounced intramolecular charge transfer band and extended absorption. Power conversion efficiency of these copolymer‐based devices strongly depends on the D/A molar ratio, related to the spectrum absorption and active layer morphology. Among the polymer solar cells based on random copolymers, PPC‐T‐BT_2/1:PC61BM based device achieved the best efficiency of 1.9%, which is close to the efficiency of PPCDTBT:PC61BM based device (2.3%). Therefore, it is concluded that the random copolymer can achieve the comparable performance to alternating copolymer by precisely adjusting the D/A molar ratio on small scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4885–4893  相似文献   
64.
A new class of nanoscale light‐harvesting discotic liquid crystalline porphyrins, with the same basic structure of the best photoreceptor in nature (chlorophyll), was synthesized. These materials can be exceptionally aligned into a highly ordered architecture in which the columns formed by intermolecular π–π stacking are spontaneously perpendicular to the substrate. The homeotropic alignment, well confirmed by synchrotron X‐ray diffraction, could not only provide the most efficient pathway for hole conduction along the columnar axis crossing the device thickness, but also offer the largest area to the incident light for optimized light harvesting. Their preliminary photocurrent generation and photovoltaic performances were also demonstrated. The results provide new and efficient pathways to the development of organic photovoltaics by using homeotropically aligned liquid crystal thin films.  相似文献   
65.
《Mendeleev Communications》2022,32(6):757-758
Thin films based on the ternary complex oxide Bi0.50Fe0.4WOq with a cubic pyrochlore structure were obtained and used for the first time as electron-transport layers in perovskite solar cells. The measured power conversion efficiency was ~ 4 rel% higher than that of state-of-the-art TiO2-based perovskite solar cells.  相似文献   
66.
Multi-branched molecules have recently demonstrated interesting behaviour as charge-transporting materials within the fields of perovskite solar cells (PSCs). For this reason, extended triarylamine dendrons have been grafted onto a pillar[5]arene core to generate dendrimer-like compounds, which have been used as hole-transporting materials (HTMs) for PSCs. The performances of the solar cells containing these novel compounds have been extensively investigated. Interestingly, a positive dendritic effect has been evidenced as the hole transporting properties are improved when going from the first to the second-generation compound. The stability of the devices based on the best performing pillar[5]arene material has been also evaluated in a high-throughput ageing setup for 500 h at high temperature. When compared to reference devices prepared from spiro-OMeTAD, the behaviour is similar. An analysis of the economic advantages arising from the use of the pillar[5]arene-based material revealed however that our pillar[5]arene-based material is cheaper than the reference.  相似文献   
67.
68.
We review the morphologies of polymer-based solar cells and the parameters that govern the evolution of the morphologies and describe different approaches to achieve the optimum morphology for a BHJ OPV. While there are some distinct differences, there are also some commonalities. It is evident that morphology and the control of the morphology are important for device performance and, by controlling the thermodynamics, in particular, the interactions of the components, and by controlling kinetic parameters, like the rate of solvent evaporation, crystallization and phase separation, optimized morphologies for a given system can be achieved. While much research has focused on P3HT, it is evident that a clearer understanding of the morphology and the evolution of the morphology in low bad gap polymer systems will increase the efficiency further. While current OPVs are on the verge of breaking the 10% barrier, manipulating and controlling the morphology will still be key for device optimization and, equally important, for the fabrication of these devices in an industrial setting. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
69.
The results herein expand on optimized direct arylation polymerization (DArP) conditions for defect‐free poly[(2,5‐bis (2‐hexyldecyloxy)phenylene)‐alt‐(4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5] thiadiazole)] (PPDTBT). Semi‐alternating and alternating donor–acceptor polymers containing alkoxy phenylene, dithienyl‐substituted thieno[3,4‐c]pyrrole‐4,6‐dione (DTTPD), and dithienyl‐substituted diketopyrrolopyrrole (DTDPP) were prepared via DArP, including a four‐component semi‐alternating copolymer PPDTDPPTPD. Variation of the alkoxy substituents on the phenylene donor including n‐hexyl, 2‐ethylhexyl, or 2‐hexyldecyl allowed for the tuning of thephysical and electronic properties. Molecular weights (M n) ranged from 3.07 to 28.3 kDa for the PPDTTPD polymers and 2.63‐44.0 kDa for the PPDTDPP polymers, depending on the alkoxy substituents. Absorbance maxima and HOMO energies were varied from 550 to 602 nm and ?5.31 to ?5.69 eV for the PPDTTPD polymers and from 671 to 794 nm and ?5.41 to ?5.55 eV for the PPDTDPP polymers, respectively. Additive‐free, bulk heterojunction (BHJ) solar cells were fabricated, and the fill‐factors obtained (0.57–0.63) are some of the highest reported for polymers prepared using DArP. Higher molecular weight polymers for both PPDTTPD (28 kDa) and PPDTDPP (44 kDa) series performed poorly in solar cells. In contrast, the semi‐alternating polymers of lower M n for the PPDTTPD (12.4 kDa) and PPDTDPP (9.05 kDa) series, incorporating both n‐hexyl and 2‐hexyldecyl alkoxy phenylene donors, provided power conversion efficiencies (PCE) of 3.26% and 3.49%, respectively. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3370–3380  相似文献   
70.
Control of the crystallization of conjugated polymers is of critical importance to the performance of organic electronics, such as organic photovoltaic devices, due to the effect on charge separation and transport, particularly for all‐polymer devices. The block copolymer poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF), which has matched crystallization temperatures for each block, is used to study the effects of processing history on resulting crystallization. For longer annealing times and rapid quenching to room temperature, P3DDT crystals are preferred whereas for shorter annealing times and slower quenching, PF crystals are preferred. Both crystal forms are evidenced for long annealing time and slow quenching. Additionally, for room temperature annealing in the presence of a chloroform vapor, PF crystals are found in the PF β phase with the predominant crystal peak oriented perpendicular to the thermally annealed case. These results will provide guidance for optimizing annealing strategies for future donor/acceptor block copolymer photovoltaic devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 900–906  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号