首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11138篇
  免费   1175篇
  国内免费   1094篇
化学   8795篇
晶体学   49篇
力学   1085篇
综合类   161篇
数学   987篇
物理学   2330篇
  2024年   39篇
  2023年   160篇
  2022年   424篇
  2021年   395篇
  2020年   507篇
  2019年   425篇
  2018年   419篇
  2017年   425篇
  2016年   564篇
  2015年   487篇
  2014年   564篇
  2013年   1160篇
  2012年   672篇
  2011年   623篇
  2010年   446篇
  2009年   520篇
  2008年   506篇
  2007年   594篇
  2006年   543篇
  2005年   486篇
  2004年   442篇
  2003年   355篇
  2002年   364篇
  2001年   278篇
  2000年   252篇
  1999年   230篇
  1998年   223篇
  1997年   195篇
  1996年   165篇
  1995年   145篇
  1994年   88篇
  1993年   119篇
  1992年   108篇
  1991年   69篇
  1990年   62篇
  1989年   50篇
  1988年   36篇
  1987年   35篇
  1986年   32篇
  1985年   29篇
  1984年   27篇
  1983年   14篇
  1982年   20篇
  1981年   16篇
  1980年   19篇
  1979年   18篇
  1978年   13篇
  1977年   8篇
  1976年   10篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
The polarized Raman spectra of the upper part of a thin ice Ih film were obtained in the range of 150 cm−1 to 3800 cm−1. The spectra showed clear polarization dependence; several new peaks were also observed. The longitudinaloptic–tranverseoptic (LO–TO) splitting of the mode near 220 cm−1 in the translational vibration region was experimentally confirmed at 133 K. The Fermi resonance between the bending overtone (around 3270 cm−1) and symmetry stretching fundamental (around 3350 cm−1) in the stretching vibration region appeared at nearly the same temperature. Results showed that ice XI (i.e. proton‐ordered phase of ice Ih) slowly formed in the upper part of a thin ice Ih film without KOH as the temperature gradually decreased below 133 K. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
92.
Novel SiO2-pyrazole (SiO2-PYZ) nanocomposite was introduced for the elimination of Zn(II) and Cr(III) from oil reservoir water. Characterization analysis of prepared SiO2-PYZ nanocomposite was investigated using SEM, FTIR, TGA, XRD, TEM, and BET. Studying the effects and optimization of the parameters such as retention time, pH, initial Cr(III) and Zn(II) ions concentrations, adsorbent dosage, and temperature were examined. For kinetics investigation, the pseudo-second-order (PSO) model matches the adsorption process effectively under different operating conditions. After applying two other isotherm models (Langmuir and Freundlich), the experimental data was adequately equipped with Langmuir, R2 = 1. The thermodynamic results pointed that the adsorption of Zn(II) and Cr(III) ions was spontaneous, endothermic, and physisorption reaction. At pH 12, the influence of more than one ion, such as Ca(II) and Na(I), was checked, and the results revealed that this conjugate substance was highly selective to Cr(III). After washing with water in multiple cycles, the adsorbed material was regenerated with 0.1 M HCl and subsequently reused without deterioration in its case cavities. Interestingly, SiO2-PYZ was highly effective against sulfate-reducing bacteria (SRB) in the petroleum field.  相似文献   
93.
The thermodynamics of proton‐coupled electron transfer (PCET) in weakly coupled organic pseudobases was investigated using 2,7‐dimethyl‐9‐hydroxy‐9‐phenyl‐10‐tolyl‐9,10‐dihydroacridine (AcrOH) and 6‐phenylphenanthridinol (PheOH) as model compounds. Pourbaix diagrams for two model compounds were constructed using the oxidation potentials and the pKa values obtained, respectively, from cyclic voltammetry and photometric titrations. Our comparative study reveals the importance of having the redox active –N center closer to –OH functionality on the thermodynamics of PCET process: PheOH exhibits a wider range of pH values (pH = 2.8 to 13.3) in which both the alcohol and the corresponding alkoxy radical are expected to coexist in solution. This result indicates that a concerted mechanism is more likely to be discovered in pseudobases analogous to PheOH. The thermochemical data also indicate that the concerted PCET mechanism cannot be achieved if water is used as the proton acceptor: assuming the pKa of hydronium ions as ?1.7, the PCET involving PheOH or AcrOH as proton/electron donors and water as the proton acceptor is expected to follow the stepwise ET/PT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
94.
《中国化学快报》2021,32(8):2484-2488
Electrochemical water splitting is a facile and effective route to generate pure hydrogen and oxygen.However,the sluggish kinetics of hydrogen evolution reaction(HER) and especially oxygen evolution reaction(OER) hinder the water splitting efficiency.Meanwhile,the high-cost of noble-metal catalysts limit their actual application.It is thus highly urgent to exploit an economical and earthabundant bifunctional HER and OER electrocatalyst to simplify procedure and reduce cost.Herein,we synthesize the three-dimensionally ordered macro-/mesoporous(3 DOM/m) Ni_xCo_(100-x) alloys with distinctive structure and large surface area via a dual-templating technique.Among them,the3 DOM/m Ni_(61)Co_(39) shows the lowest overpotentials of 121 mV and 241 mV at 10 mA/cm~2 for HER and OER,respectively.Furthermore,when employed for water splitting,the Ni_(61)Co_(39) only requires 1.60 V to approach 10 mA/cm2 and presents excellent stability.These encouraging performances of the Ni_(61)Co_(39)render it a promising bifunctional catalyst for overall water splitting.  相似文献   
95.
利用三态模型和含时波包法, 研究了K2分子在强飞秒泵浦-探测激光场中泵浦/探测场强、波长对光电子能谱Autler-Townes(AT)分裂的影响.通过分别改变两激光场的场强或者波长预测AT峰移和间距,并且首次量化了AT分裂的峰移和间距.光电子能谱在共振时显示为对称双峰,失谐时为非对称双峰。AT分裂间距随泵浦场强增大而增大,但不因探测场强改变而改变.  相似文献   
96.
Understanding the molecular determinants of the relative propensities of proteins to aggregate in a cellular environment is a central issue for treating protein‐aggregation diseases and developing peptide‐based therapeutics. Despite the expectation that protein aggregation can largely be attributed to direct protein–protein interactions, a crucial role the surrounding water in determining the aggregation propensity of proteins both in vitro and in vivo was identified. The overall protein hydrophobicity, defined solely by the hydration free energy of a protein in its monomeric state sampling its equilibrium structures, was shown to be the predominant determinant of protein aggregation propensity in aqueous solution. Striking discrimination of positively and negatively charged residues by the surrounding water was also found. This effect depends on the protein net charge and plays a crucial role in regulating the solubility of the protein. These results pave the way for the design of aggregation‐resistant proteins as biotherapeutics.  相似文献   
97.
Photocatalytic conversion of CO2 to reduction products, such as CO, HCOOH, HCHO, CH3OH, and CH4, is one of the most attractive propositions for producing green energy by artificial photosynthesis. Herein, we found that Ga2O3 photocatalysts exhibit high conversion of CO2. Doping of Zn species into Ga2O3 suppresses the H2 evolution derived from overall water splitting and, consequently, Zn‐doped, Ag‐modified Ga2O3 exhibits higher selectivity toward CO evolution than bare, Ag‐modified Ga2O3. We observed stoichiometric amounts of evolved O2 together with CO. Mass spectrometry clarified that the carbon source of the evolved CO is not the residual carbon species on the photocatalyst surface, but the CO2 introduced in the gas phase. Doping of the photocatalyst with Zn is expected to ease the adsorption of CO2 on the catalyst surface.  相似文献   
98.
Two urea‐based porous organic frameworks, UOF‐1 and UOF‐2, were synthesized through a urea‐forming condensation of 1,3,5‐benzenetriisocyanate with 1,4‐diaminobenzene and benzidine, respectively. UOF‐1 and UOF‐2 possess good hydrophilic properties and high scavenging ability for palladium. Their palladium polymers, PdII/UOF‐1 and PdII/UOF‐2, exhibit high catalytic activity and selectivity for Suzuki–Miyaura cross‐coupling reactions and selective reduction of nitroarenes in water. The catalytic reactions can be efficiently performed at room temperature. Palladium nanoparticles with narrow size distribution were formed after the catalytic reaction and were well dispersed in UOF‐1 and UOF‐2. XPS analysis confirmed the coordination of the urea oxygen atom with palladium. SEM and TEM images showed that the original network morphology of UOF‐1 and UOF‐2 was maintained after palladium loading and catalytic reactions.  相似文献   
99.
Porous tantalum nitride (Ta3N5) single crystals, combining structural coherence and porous microstructure, would substantially improve the photoelectrochemical performance. The structural coherence would reduce the recombination of charge carriers and maintain excellent transport properties while the porous microstructure would not only reduce photon scattering but also facilitate surface reactions. Here, we grow bulk-porous Ta3N5 single crystals on a two-centimeter scale with (002), (023), and (041) facets, respectively, and show significantly enhanced photoelectrochemical performance. We show the preferential facet growth of porous crystals in a lattice reconstruction strategy in relation to lattice match and lattice channel. We present the facet engineering to enhance light absorption, exciton lifetime and transport properties. The porous Ta3N5 single crystal boosts photoelectrochemical oxidation of alcohols with the (002) facet showing the highest performance of >99 % alcohol conversion and >99 % aldehyde/ketone selectivity.  相似文献   
100.
Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18 , 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih). The strongest HBs within H2O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2O clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号