首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6076篇
  免费   768篇
  国内免费   192篇
化学   6905篇
晶体学   57篇
力学   2篇
综合类   9篇
物理学   63篇
  2024年   2篇
  2023年   80篇
  2022年   110篇
  2021年   142篇
  2020年   254篇
  2019年   192篇
  2018年   103篇
  2017年   106篇
  2016年   259篇
  2015年   275篇
  2014年   289篇
  2013年   406篇
  2012年   382篇
  2011年   382篇
  2010年   361篇
  2009年   380篇
  2008年   456篇
  2007年   493篇
  2006年   359篇
  2005年   374篇
  2004年   398篇
  2003年   334篇
  2002年   94篇
  2001年   95篇
  2000年   75篇
  1999年   106篇
  1998年   113篇
  1997年   85篇
  1996年   79篇
  1995年   90篇
  1994年   37篇
  1993年   25篇
  1992年   25篇
  1991年   15篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1975年   4篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有7036条查询结果,搜索用时 15 毫秒
101.
符合经典构效关系的抗肿瘤铂类药物   总被引:3,自引:0,他引:3  
王联红  刘芸  苟少华  尤启冬 《化学通报》2003,66(12):828-836
综述了自顺铂、卡铂后符合经典构效关系的铂类抗肿瘤药物的发展概况,按载体配基和离去基团的结构特征进行了分类,总结了各类配合物的构效关系和临床进展,其中重点对手性二胺配体的铂(Ⅱ)配合物进行了介绍。并讨论了顺铂、卡铂、奥沙利铂的作用机理。  相似文献   
102.
From conductance and viscosities measurements on Pr4NCl, Et4NBr, and AgNO3 in acetonitrile and Et3NBr in nitrobenzene, the Walden products of the anion at infinite dilution were determined in presence of various concentrations of substituted benzoic acids. From these data it was possible to compute the values of the Walden products of the once complexed anions and to estimate the order of magnitude of the Walden products of twice complexed anions. Stokes' law is not obeyed, and the Walden products are not proportional to the third root of the molar volume of the complexed ions, as a consequence of their lack of sphericity. The assumption that the drag force which acts on the ions is proportional to the volume of the substituents results in a linear expression between the reciprocals of the Walden products and the molar volume of the ligands. The experimental results fit this expression within the limits of the experimental errors, and the slopes of the lines are nearly the same for all the anions and for the two solvents studied here, namely, 2.5×10–4 ohm-cm–5 mole-cP–1.  相似文献   
103.
Summary.  A series of novel tridentate ligands with nitrogen and oxygen donor sites was synthesized starting from enantiomerically pure (S)- and (R)-1-(pyridin-2-yl)ethylamine, the preparation and resolution of which was developed. The new optically active ligands were tested as in situ catalysts together with Ru(PPh3)3Cl2 in the enantioselective transfer hydrogenation of acetophenone with isopropanol. The secondary amine ligand (S)-2,4-di-tert-butyl-6-(1-(pyridin-2-yl)ethylamino)methylphenol gave the best results with almost quantitative conversion and 47%ee. Received August 17, 2001. Accepted August 27, 2001  相似文献   
104.
The reactions of the cationic, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(8)-C(8)H(8))]BF(4) (1, Ar=C(6)H(5); 2, Ar=p-CH(3)C(6)H(4); 3, Ar=p-CF(3)C(6)H(4)) with LiN(C(6)H(5))(2) in THF at low temperature gave novel N-nucleophilic-addition products, namely, the neutral, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(7)-C(8)H(8)N(C(6)H(5))(2))] (4, Ar=C(6)H(5); 5, Ar=p-CH(3)C(6)H(4); 6, Ar=p-CF(3)C(6)H(4))). Cationic bridging carbyne complexes 1-3 react with (C(2)H(5))(2)NH, (iC(3)H(7))(2)NH, and (C(6)H(11))(2)NH under the same conditions with ring cleavage of the COT ligand to produce the novel diiron-bridging carbene inner salts [Fe(2)[mu-C(Ar)C(8)H(8)NR(2)](CO)(4)] (7, Ar=C(6)H(5), R=C(2)H(5); 8, Ar=p-CH(3)C(6)H(4), R=C(2)H(5); 9, Ar=p-CF(3)C(6)H(4), R=C(2)H(5); 10, Ar=C(6)H(5), R=iC(3)H(7); 11, Ar=p-CH(3)C(6)H(4), R=iC(3)H(7); 12, Ar=p-CF(3)C(6)H(4), R=iC(3)H(7); 13, Ar=C(6)H(5), R=C(6)H(11); 14, Ar=p-CH(3)C(6)H(4), R=C(6)H(11), 15, Ar=p-CF(3)C(6)H(4), R=C(6)H(11)). Piperidine reacts similarly with cationic carbyne complex 3 to afford the corresponding bridging carbene inner salt [Fe(2)[mu-C(Ar)C(8)H(8)N(CH(2))(5)](CO)(4)] (16). Compound 9 was transformed into a new diiron-bridging carbene inner salt 17, the trans isomer of 9, by heating in benzene. Unexpectedly, the reaction of C(6)H(5)NH(2) with 2 gave a novel COT iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NHC(6)H(5)](mu-CO)(CO)(3)(eta(8)-C(8)H(8))] (18). However, the analogous reactions of 2-naphthylamine with 2 and of p-CF(3)C(6)H(4)NH(2) with 3 produce novel chelated iron-carbene complexes [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(10)H(7)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (19) and [Fe(2)[=C(C(6)H(4)CF(3)-p)NC(6)H(4)CF(3)-p](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (20), respectively. Compound 18 can also be transformed into the analogous chelated iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(6)H(5)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (21). The structures of complexes 6, 9, 15, 17, 18, and 21 have been established by X-ray diffraction studies.  相似文献   
105.
The reaction of Ph(2)PNHPPh(2) (PNP) with RNCS (Et, Ph, p-NO(2)(C(6)H(4))) gives addition products resulting from the attack of the P atoms of PNP on the electrophilic carbon atom of the isothiocyanate. When PNP is reacted with EtNCS in a 1:2 molar ratio, the zwitterionic molecule EtNHC(S)PPh(2)==NP(+)Ph(2)C(S)N(-)Et (HSNS) is obtained in high yield. HSNS can be protonated (H(2)SNS(+)) or deprotonated (SNS(-)), behaving in the latter form as an S,N,S-donor pincer ligand. The reaction of HSNS with [(acac)Rh(CO)(2)] (acac=acetylacetonate) affords the zwitterionic metalate [(SNS)Rh(CO)]. Other products can be obtained depending on the R group, the PNP/RNCS ratio (1:1 or 1:2), and the reaction temperature. The proposed product of the primary attack of PNP on RNCS, Ph(2)PN==PPh(2)C(S)NHR (A), cannot be isolated. Reaction of A with another RNCS molecule leads to 1:2 addition compounds of the general formula RNHC(S)PPh(2)==NP(+)Ph(2)C(S)N(-)R (1), which can rearrange into the non-zwitterionic product RNHC(S)PPh(2)==NP(S)Ph(2) (2) by eliminating a molecule of RNC. Two molecules of A can react together, yielding 1:1 PNP/RNCS zwitterionic products of the formula RNHCH[PPh(2)==NP(S)Ph(2)]PPh(2)==NP(+)Ph(2)C(S)N(-)R (3). Compound 3 can then rearrange into RNHCH[PPh(2)==NP(S)Ph(2)](2) (4) by losing a RNC molecule. When R=Et (a), compounds 1 a, 2 a (HSNS), and 4 a have been isolated and characterized. When R=Ph (b), compounds 2 b and 4 b can be prepared in high yield. When R=p-NO(2)C(6)H(4) (c), only compound 3 c is observed and isolated in high yield. The crystal structures of HSNS, [(SNS)Rh(CO)], and of the most representative products have been determined by X-ray diffraction methods.  相似文献   
106.
The complex [Ru(II)(dcbpyH2)(bdmpp)NCS](PF6) (1) (where dcbpyH2 is 2,2′-bipyridine-4,4′-dicarboxylic acid, bdmpp is 2,6-bis(3,5-dimethyl-N-pyrazoyl)pyridine,) is synthesized and characterized extensively by 1H NMR and 13C NMR 1D and 2D, mass spectroscopy, cyclic voltammetry, electronic absorption spectroscopy and IR. The half-wave potential of the Ru(II)/Ru(III) redox couple was measured at E1/2=+0.795 V versus Ag/AgCl in CH3CN. The complex presents three intense metal-to-ligand charge transfer (MLCT) (dM→πL*) absorption bands centered at 383 (=21 300 M−1 cm−1), 432 (=22 400 M−1 cm−1) and 475 nm (=23 400 M−1 cm−1), respectively. The absorbance is extremely strong between 400 and 500 nm and even at 620 nm, the extinction coefficient is still high (=3768 M−1 cm−1). The strong π-acceptor property of the trans-isothiocyanate ligand compared with the Cl ligand is probably the cause of the blue-shift observed in complex 1. These properties make the complex potentially promising for the photosensitization process. The incorporation of TiO2 photoelectrodes derivatized with this complex into a solar cell using a composite polymer/inorganic oxide solid-state electrolyte confirmed its sensitizing ability. Incident monochromatic photon-to-current conversion efficiency (IPCE) values of about 30% and overall energy conversion efficiency (η) of 1.7% were obtained.  相似文献   
107.
The beryllocenes [Be(C(5)Me(4)H)(2)] (1), [Be(C(5)Me(5))(2)] (2), and [Be(C(5)Me(5))(C(5)Me(4)H)] (3) have been prepared from BeCl(2) and the appropriate KCp' reagent in toluene/diethyl ether solvent mixtures. The synthesis of 1 is facile (20 degrees C, overnight), but generation of decamethylberyllocene 2 demands high temperatures (ca. 115 degrees C) and extended reaction times (3-4 days). The mixed-ring beryllocene 3 is obtained when the known [(eta(5)-C(5)Me(5))BeCl] is allowed to react with K[C(5)Me(4)H], once more under somewhat forcing conditions (115 degrees C, 36 h). The structures of the three metallocenes have been determined by low-temperature X-ray studies. Both 1 and 3 present eta5/eta1 geometries of the slip-sandwich type, whereas 2 exhibits an almost regular, ferrocene-like, sandwich structure. In the mixed-ring compound 3, C(5)Me(5) is centrally bound to beryllium and the eta(1)-C(5)Me(4)H ring bonds to the metal through the unique CH carbon atom. This is also the binding mode of the eta(1)-ring of 1. To analyze the nature of the bonding in these molecules, theoretical calculations at different levels of theory have been performed on compounds 2 and 3, and a comparison with the bonding in [Be(C(5)H(5))(2)] has been made. As for the latter molecule, energy differences between the eta5/eta5 and the eta5/eta1 structures of 2 are very small, being of the order of a few kcal mol(-1). Constrained space orbital variations (CSOV) calculations show that the covalent character in the bonding is larger for [Be(C(5)Me(5))(2)] than for [Be(C(5)H(5))(2)] due to larger charge delocalization and to increased polarizability of the C(5)Me(5) fragment.  相似文献   
108.
The reported competition STD NMR method combines saturation transfer difference (STD) NMR with competition binding experiments to allow the detection of high-affinity ligands that undergo slow chemical exchange on the NMR time-scale. With this technique, the presence of a competing high-affinity ligand in the compound mixture can be detected by the disappearance or reduction of the STD signals of a low-affinity indicator ligand. This is demonstrated on a BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) protein-inhibitor system. This method can also be used to derive an approximate value, or a lower limit, for the dissociation constant of the potential ligand based on the reduction of the signal intensity of the STD indicator, which is illustrated on an HSA (human serum albumin) model system. This leads to important applications of the competition STD NMR method for lead discovery: it can be used (i) for compound library screening against a broad range of drug targets to identify both high- and low-affinity ligands and (ii) to rank order analogs rapidly and derive structure-activity relationships, which are used to optimize these NMR hits into viable drug leads.  相似文献   
109.
Reactions of the complex [MoCl(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1) (phen=1,10-phenanthroline) with potassium arylamides were used to synthesize the amido complexes [Mo(N(R)Ar)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (R=H, Ar=Ph, 2 a; R=H, Ar=p-tolyl, 2 b; R=Me, Ar=Ph; 2 c). For 2 b the Mo-N(amido) bond length (2.105(4) A) is consistent with it being a single bond, with which the metal attains an 18-electron configuration. The reaction of 2 b with HOTf affords the amino complex [Mo(eta(3)-C(3)H(4)-Me-2)(NH(2)(p-tol))(CO)(2)(phen)]OTf (3-OTf). Treatment of 3-OTf with nBuLi or KN(SiMe(3))(2) regenerates 2 b. The new amido complexes react with CS(2), arylisothiocyanates and maleic anhydride. A single product corresponding to the formal insertion of the electrophile into the Mo-N(amido) bond is obtained in each case. For maleic anhydride, ring opening accompanied the formation of the insertion product. The reaction of 2 b with maleimide affords [Mo(eta(3)-C(3)H(4)-Me-2)[NC(O)CH=CHC(O)](CO)(2)(phen)] (7), which results from simple acid-base metathesis. The reaction of 2 b with (p-tol)NCO affords [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(eta(2)-MoO(4))] (8), which corresponds to oxidation of one third of the metal atoms to Mo(VI). Complex 8 was also obtained in the reactions of 2 b with CO(2) or the lactide 3,6-dimethyl-1,4-dioxane-2,5-dione. The structures of the compounds 2 b, 3-OTf, [Mo(eta(3)-C(3)H(4)-Me-2)[SC(S)(N(H)Ph)](CO)(2)(phen)] (4), [Mo(eta(3)-C(3)H(4)-Me-2)[SC(N(p-tol))(NH(p-tol))](CO)(2)(phen)] (5 a), and [Mo(eta(3)-C(3)H(4)-Me-2)[OC(O)CH=CHC(O)(NH(p-tol))](CO)(2)(phen)] (6), 7, and 8 (both the free complex and its N,N'-di(p-tolyl)urea adduct) were determined by X-ray diffraction.  相似文献   
110.
Chloride abstraction from the half‐sandwich complexes [RuCl2(η6p‐cymene)(P*‐κP)] ( 2a : P* = (Sa,R,R)‐ 1a = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐1‐phenylethyl)]phosphoramidite; 2b : P* = (Sa,R,R)‐ 1b = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐(1‐(1‐naphthalen‐1‐yl)ethyl]phosphoramidite) with (Et3O)[PF6] or Tl[PF6] gives the cationic, 18‐electron complexes dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐phenyl]ethyl}[(1R)‐1‐phenylethyl]phosphoramidite‐κP}ruthenium(II) hexafluorophosphate ( 3a ) and [Ru(S)]‐dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐naphthalen‐1‐yl]ethyl}[(1R)‐1‐(naphthalen‐1‐yl)ethyl]phosphoramidite‐κP)ruthenium(II) hexafluorophosphate ( 3b ), which feature the η2‐coordination of one aryl substituent of the phosphoramidite ligand, as indicated by 1H‐, 13C‐, and 31P‐NMR spectroscopy and confirmed by an X‐ray study of 3b . Additionally, the dissociation of p‐cymene from 2a and 3a gives dichloro{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐(1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP)ruthenium(II) ( 4a ) and di‐μ‐chlorobis{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP}diruthenium(II) bis(hexafluorophosphate) ( 5a ), respectively, in which one phenyl group of the N‐substituents is η6‐coordinated to the Ru‐center. Complexes 3a and 3b catalyze the asymmetric cyclopropanation of α‐methylstyrene with ethyl diazoacetate with up to 86 and 87% ee for the cis‐ and the trans‐isomers, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号