首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1680篇
  免费   154篇
  国内免费   215篇
化学   1923篇
晶体学   5篇
力学   1篇
综合类   6篇
数学   4篇
物理学   110篇
  2024年   6篇
  2023年   41篇
  2022年   109篇
  2021年   141篇
  2020年   110篇
  2019年   80篇
  2018年   58篇
  2017年   59篇
  2016年   87篇
  2015年   86篇
  2014年   95篇
  2013年   112篇
  2012年   104篇
  2011年   80篇
  2010年   77篇
  2009年   89篇
  2008年   77篇
  2007年   91篇
  2006年   69篇
  2005年   72篇
  2004年   88篇
  2003年   63篇
  2002年   34篇
  2001年   30篇
  2000年   30篇
  1999年   21篇
  1998年   17篇
  1997年   16篇
  1996年   22篇
  1995年   19篇
  1994年   9篇
  1993年   11篇
  1992年   4篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1974年   1篇
排序方式: 共有2049条查询结果,搜索用时 15 毫秒
991.
UV resonance Raman spectra of the antimicrobial peptide (AMP) Anoplin (L ‐Anoplin‐NH2) and two of its derivatives (enantiomer D ‐Anoplin‐NH2 and C‐terminus deamidated L ‐Anoplin‐OH) were measured in aqueous buffer solution and in membrane‐mimetic environments including 2,2,2‐trifluoro ethanol (TFE), zwitterionic lipid dipalmitoylglycerophosphocholine (DPPC) and anionic lipid dipalmitoylglycerophosphoglycerol (DPPG) vesicle solutions. All three peptides were found to adopt random‐coil/β turn‐like conformation in aqueous solution over the temperature range of 1–60 °C. The conformation was found to become more α‐helical in membrane‐mimetic solutions such as TFE and DPPG but not in DPPC for all Anoplin derivatives. The data demonstrate that Anoplin preferentially binds to the anionic over the zwitterionic model cell membranes. Results also showed that deamidation does not change the conformation of L ‐Ano‐NH2 very significantly, but does alter membrane rupturing and antimicrobial activities thus confirming that it is the physicochemical properties rather than the peptide conformation that define the mechanism of AMP action. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
992.
Effects of substituted aryl groups on dissociations of peptide aminoketyl radicals were studied computationally for model tetrapeptide intermediates GXD?G where X was a cysteine residue that was derivatized by S‐(3‐nitrobenzyl), S‐(3‐cyanobenzyl), S‐(3,5‐dicyanobenzyl), S‐(2,3,4,5,6‐pentafluorobenzyl), and S‐benzyl groups. The aminoketyl radical was placed within the Asp amide group. Aminoketyl radicals having the S‐(3‐nitrobenzyl) group were found to undergo spontaneous and highly exothermic migration of the hydroxyl hydrogen atom onto the nitro group in conformers allowing interaction between these groups. Competing reaction channels were investigated for aminoketyl radicals having the S‐(3‐cyanobenzyl) and S‐(3,5‐dicyanobenzyl) groups, e.g. H‐atom migration to the C and N atoms of the C≡N group, migration to the C‐4 position of the phenyl ring, and dissociation of the radical‐activated N? Cα bond between the Asp and Gly residues. RRKM kinetic analysis on the combined B3LYP and ROMP2/6‐311++G(2d,p) potential energy surface indicated > 99% H‐atom transfer to the C≡N group forming a stable iminyl intermediate. The N? Cα bond dissociation was negligible. In contrast, peptides with the S‐(2,3,4,5,6‐pentafluorobenzyl) and S‐benzyl groups showed preferential N? Cα bond dissociation that outcompeted H‐atom migration to the C‐4 position and fluorine substituents in the phenyl ring. These computational results are used to suggest an alternative mechanism for the quenching effect on electron‐based peptide backbone dissociations of benzyl groups with electron‐withdrawing substitutents, as reported recently. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
993.
Croissamide, a proline-rich cyclic peptide that contains an N-prenylated tryptophan, was isolated from a marine cyanobacterium Symploca sp. Its gross structure was determined by spectroscopic analyses, and the absolute configuration was established based on chiral HPLC analyses of acid hydrolysates.  相似文献   
994.
The cadmium-binding properties of the C-terminal hexapeptide of mouse metallothionein I, Lys-Cys-Thr-Cys-Cys-Ala, were studied by circular dichroism spectroscopy (CD), differential pulse polarography (DPP) and 113Cd-nuclear magnetic resonance (NMR).

The structure of the multiple cadmium binding sites could not be determined by 113Cd-NMR because of the insolubility of the Cd–peptide samples at the high concentrations required for NMR. Therefore, alternative approaches were used: CD and DPP. The data were analyzed using a multivariate curve resolution (MCR) approach, based on factor analysis techniques, which allows the identification of the signal corresponding to different metal ions bound in different chemical environments. The CD study confirmed that the binding of Cd2+ induces important conformational changes in the structure of the peptidic complex, including the formation of a binuclear cluster. The DPP results obtained at various Cd2+-to-peptide concentration ratios and pH values, under conditions where electrode adsorption is low, if not negligible, indicated the formation of different Cd2+–peptide complexes, and a scheme for the electrochemical reduction of the complexed Cd2+ ions is proposed.

These results show that the application of MCR to complex data, such as those from DPP, allows to reach valuable information which is not possible to be obtained by univariate approaches.  相似文献   

995.
We compared the tandem mass spectra of a range of native and acetylated Ag(+) cationized peptides to determine the influence of the derivatization step on the abundance of the [b(n) + 17 + Ag](+) product ions. Using tripeptides, the smallest for which the mechanisms to generate [b(2) - 1 + Ag](+) and [b(2) + 17 + Ag](+) products are both operative, we found that in most cases acetylation causes an increase in the abundance of the C-terminal rearrangement ion, [b(2) + 17 + Ag](+), relative to the rival N-terminal rearrangement ion, [b(2) - 1 + Ag](+). The presence of a free amino group to bind to the metal ion significantly influences the relative abundances of the product ions. We propose a mechanism for the formation of the [b(n) + 17 + Ag](+) that is based on the formation of a five-membered oxazolidin-5-one and tetrahedral carbon intermediate that may collapse to a peptide upon release of CO and an imine, aided by the fact that the ring formed during C-terminal rearrangement is both a hemiacylal and hemiaminal. We also identified an influence of amino acid sequence on the relative abundances of the [b(n) + 17 + Ag](+) and [b(n) - 1 + Ag](+) product ions, whereby bulky substituents located on the alpha-carbon of the amino acid to the C-terminal side of the cleavage site apparently promote the formation of the [b(n) + 17 + Ag](+) product over [b(n) - 1 + Ag](+) when the amino acid to the N-terminal side of the cleavage site is glycine. The latter ion is the favored product, however, when the bulky group is positioned on the alpha-carbon of the amino acid to the N-terminal side of the cleavage site.  相似文献   
996.
向华 ECKSTEIN  Heiner 《中国化学》2004,22(10):1138-1141
A process for the synthesis of CCK-8 tripeptide H-Gly-Trp-Met-OH catalyzed by immobilized enzyme was reported. Enzymes were used for the formation of peptide bonds and the removal of protecting group. Starting with phenylacetyl (PhAc) glycin, N-protected dipeptide PhAc-Gly-Trp-OMe was obtained by coupling PhAc-protected glycine carboxamidomethyl ester (OCam) with Trp-OMe catalyzed by immobilized papain in buffered ethyl acetate. Then the condensation between PhAc-Gly-Trp-OMe and Met-OEtoHC1 was carried out by immobilized α-chymotrypsin catalysis in solvent free system. Basic hydrolysis was followed getting PhAc-Gly-Trp-Met-OH. The PhAc-group was removed with penicillin G amidase and H-Gly-Trp-Met-OH was obtained in an overall yield of 43.9%. The reaction conversion of tripeptide in solvent free system was strongly affected by the system of basic salts added. The influence of the support materials used to deposit enzymes and structures of acyl donor and nucleophile on the reaction was also investigated.  相似文献   
997.
The ability to extract peptides and proteins from biological samples with excellent reusability, high adsorption capacity, and great selectivity is essential in scientific research and medical applications. Inspired by the advantages of core-shell materials, we fabricated a core-shell material using amino-functionalized silica as the core. Benzene-1,3,5-tricarbaldehyde and 3,5-diaminobenzoic acid were used as model organic ligands to construct a shell coating by alternately reacting the two monomers on the surface of silica microspheres. The resultant material featured an outstanding capability for the adsorption of cationic peptides, most likely owing to its porous structure, a large number of carboxylic functional groups, and low mass-transfer resistance. The maximum saturated adsorption capacity reached 833.3 mg/g and the adsorption process took only 20 min. Under optimized adsorption conditions, the core-shell material was used to selectively adsorb cationic peptides from the tryptic digestive solution of lysozyme and bovine serum albumin, Specifically, the analysis results showed seven cationic peptides in the eluate and twenty anionic peptides in the supernatant, which indicates the efficient trap of most cationic peptides in the digestive solution.  相似文献   
998.
Reversed-phase solid-phase extraction (SPE) is the method of choice for the purification of proteomics samples. Even though the efficacy of SPE methods is sample type-dependent, the manufacturers' protocols are used in most studies. Using an optimized SPE method can lead to a substantial gain in identification and recovery. In this tutorial, we give a brief introduction to the most important parameters influencing SPE performance, and we present a short workflow (16 measurements) for optimizing the SPE procedure. This is complemented by method performance assessment instructions and a short troubleshooting guide to help users further understand and investigate their SPE methods.  相似文献   
999.
1000.
We describe an efficient solid-phase synthesis of C-terminal peptide aldehyde. Making use of the stability of the PAM linker towards both acid and base conditions, a pentapeptide was synthesized starting from a PAM resin according to Fmoc/tBu chemistry. The side-chains were deprotected by TFA. The peptide was cleaved by aminolysis with aminoacetaldehyde-dimethylacetal leading to a C-terminal masked aldehyde. The unprotected peptide aldehyde was then coupled to amino-oxy derivatives by chemoselective ligation in aqueous solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号