首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   93篇
  国内免费   28篇
化学   108篇
晶体学   18篇
综合类   5篇
数学   1篇
物理学   204篇
  2023年   6篇
  2022年   16篇
  2021年   16篇
  2020年   20篇
  2019年   12篇
  2018年   11篇
  2017年   14篇
  2016年   12篇
  2015年   13篇
  2014年   21篇
  2013年   23篇
  2012年   17篇
  2011年   14篇
  2010年   17篇
  2009年   13篇
  2008年   13篇
  2007年   11篇
  2006年   19篇
  2005年   7篇
  2004年   14篇
  2003年   5篇
  2002年   7篇
  2001年   8篇
  2000年   10篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1985年   2篇
排序方式: 共有336条查询结果,搜索用时 30 毫秒
11.
In order to improve the optical properties of the Ⅲ-Ⅴ laser diodes(LDs) by means of H2S plasma passivation technology,H2S plasma passivation treatment is performed on the GaAs(110) surface.The optimum passivation conditions obtained are 60-W radio frequency(RF)power and 20-min duration.So the laser cavity surfaces axe treated under the optimum passivation conditions.Consequently,compared with unpassivated lasers with only AR/HR-coatings,the catastrophic optical damage (COD) threshold value of the passivated lasers by H2S plasma treatment is increased by 33%,which is almost the same as that of (NH4)2Sx treatment.And the life-test experiment has demonstrated that this passivation method is more stable than(NH4)2Sx solution wet-passivated treatment.  相似文献   
12.
In this study γ-Fe2O3 nanoparticle, surface-coated with increasing amount of oleic acid, have been prepared while the stability against particle degradation under laser excitation intensity was investigated. Maghemite nanoparticle was obtained via oxidation of magnetite nanoparticle, the latter synthesized by co-precipitation of Fe (II) and Fe (III) ions in alkaline medium. By varying the experimental conditions of surface-coating maghemite nanoparticles with oleic acid, samples with different grafting coefficient were obtained and investigated using X-ray diffraction and different spectroscopic techniques, namely Raman, Mössbauer, and infrared. The amount of oleic acid adsorbed on the maghemite surface was estimated via the carbon content obtained from elemental analysis.  相似文献   
13.
Passivation treatment on indium-doped Hg0.8Cd0.2Te epitaxial layers grown on p-Cd0.96Zn0.04Te substrates by molecular beam epitaxy has been performed in order to improve the surface stability of the Hg0.8Cd0.2Te layers. Room-temperature capacitance–voltage measurements clearly revealed metal-insulator–semiconductor (MIS) behavior for the Al/ZnS/passivated Hg0.8Cd0.2Te layer/Cd0.96Zn0.04Te diodes. The fast state density and the fixed charge density of the Al/ZnS/passivated Hg0.8Cd0.2Te/Cd0.96Zn0.04Te diode with a sulfur-treated Hg0.8Cd0.2Te layer were smaller than those with a chemically oxidized Hg0.8Cd0.2Te layer. The interface state density at the ZnS/sulfur-treated Hg0.8Cd0.2Te interface were low at 1011 eV−1 cm−2 at the middle of the Hg0.8Cd0.2Te energy gap. These results indicate that the Hg0.8Cd0.2Te epilayer is significantly passivated by sulfur treatment and that the passivated Hg0.8Cd0.2Te layers can be used for Hg1−xCdxTe-based MIS diodes and MIS field-effect transistors.  相似文献   
14.
We investigated an influence of hydrogen plasma treatment on electrical properties of shaped silicon polycrystals. Hydrogen penetration into polycrystalline silicon is demonstrated to depend on the state of the crystal (as-grown or annealed) and type of grain boundary (general or weakly deviated from special orientations). It is found that interaction of atomic hydrogen with grain boundaries can result not only in decrease of their electrical activity, but also in increase of potential barrier height at relatively high (more than 2 × 1018 cm–2) doses of incorporated hydrogen. This phenomenon is explained by a phenomenological model which takes into account passivation of grain boundary dangling bonds and boron atoms in the bulk as two main mechanisms controlling hydrogenation effect.  相似文献   
15.
This research work is intended to compare the anti-corrosive properties of three generations of inorganic phosphate pigments in solvent-based paints and in water-borne ones, both of the epoxy type. The anti-corrosive properties of phosphate pigments were assessed by means of electrochemical techniques (corrosion potential measurements, polarisation tests, etc.), employing a steel electrode dipped into pigments suspensions. The behaviour of these pigments in anti-corrosive paints, formulated with different binders, have been studied by accelerated (salt spray cabinet and humidity chamber) and electrochemical tests (corrosion potential and ionic resistance measurements).Accelerated and electrochemical tests allowed to differentiate the anti-corrosive performance of the three phosphates studied in this research. These test are also able to detect and characterise possible synergism between the water-borne resin and the pigments.  相似文献   
16.
Xiangwei Qu 《中国物理 B》2021,30(11):118503-118503
In blue quantum dot light emitting diodes (QLEDs), electron injection is insufficient, which would degrade device efficiency and stability. Herein, we employ chlorine passivated ZnO nanoparticles as electron transport layer to facilitate electron injection into QDs effectively. Moreover, it suppresses exciton quenching at the QD/ZnO interface by blocking charge transfer channel. As a result, the maximum external quantum efficiency of blue QLED was increased from 2.55% to 4.60%, and the operation lifetime of blue QLED was nearly 4 times longer than that of the control device. Our work indicates that election injection plays an important role in blue QLED efficiency and stability.  相似文献   
17.
18.
We demonstrate industrially feasible large‐area solar cells with passivated homogeneous emitter and rear achieving energy conversion efficiencies of up to 19.4% on 125 × 125 mm2 p‐type 2–3 Ω cm boron‐doped Czochralski silicon wafers. Front and rear metal contacts are fabricated by screen‐printing of silver and aluminum paste and firing in a conventional belt furnace. We implement two different dielectric rear surface passivation stacks: (i) a thermally grown silicon dioxide/silicon nitride stack and (ii) an atomic‐layer‐deposited aluminum oxide/silicon nitride stack. The dielectrics at the rear result in a decreased surface recombination velocity of Srear = 70 cm/s and 80 cm/s, and an increased internal IR reflectance of up to 91% corresponding to an improved Jsc of up to 38.9 mA/cm2 and Voc of up to 664 mV. We observe an increase in cell efficiency of 0.8% absolute for the cells compared to 18.6% efficient reference solar cells featuring a full‐area aluminum back surface field. To our knowledge, the energy conversion efficiency of 19.4% is the best value reported so far for large area screen‐printed solar cells. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
19.
Deep level transient spectroscopy (DLTS) and Laplace-DLTS (L-DLTS) have been used to investigate defects in an n-type GaAs before and after exposure to a dc hydrogen plasma (hydrogenation). DLTS revealed the presence of three prominent electron traps in the material in the temperature range 20-300 K. However, L-DLTS with its higher resolution enabled the splitting of two narrowly spaced emission rates. Consequently four electron traps at, EC—0.33 eV, EC—0.36 eV, EC—0.38 eV and EC—0.56 eV were observed in the control sample. Following hydrogenation, all these traps were passivated with a new complex (presumably the M3), emerging at EC—0.58 eV. Isochronal annealing of the passivated material between 50 and 300 °C, revealed the emergence of a secondary defect, not previously observed, at EC—0.37 eV. Finally, the effect of hydrogen passivation is completely reversed upon annealing at 300 °C, as all the defects originally observed in the reference sample were recovered.  相似文献   
20.
Amorphous alloys have many attractive characteristics including extremely high corrosion resistance if the sufficient amounts of corrosion-resistant elements are added. The superiority of amorphous alloys is based on the homogeneous single phase nature without any chemical and physical heterogeneities. Although there are processing limitations to avoid the formation of heterogeneous crystalline structure in addition to no welding technology without crystallization, the application of corrosion-resistant amorphous alloys is expected particularly to the very aggressive environments, where any conventional crystalline metallic materials cannot be used. Some amorphous bulk alloys showed zero corrosion mass loss due to spontaneous passivation even in 12 M HCl. Production of amorphous bulk alloys became possible for selected compositions. The homogeneous single phase nature is also effective to form useful catalysts with unique composition and structure. An example of catalysts is for carbon dioxide methanation useful for supply of renewable energy in the form of methane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号