全文获取类型
收费全文 | 5244篇 |
免费 | 653篇 |
国内免费 | 533篇 |
专业分类
化学 | 2068篇 |
晶体学 | 82篇 |
力学 | 987篇 |
综合类 | 70篇 |
数学 | 390篇 |
物理学 | 2833篇 |
出版年
2025年 | 19篇 |
2024年 | 94篇 |
2023年 | 94篇 |
2022年 | 138篇 |
2021年 | 162篇 |
2020年 | 142篇 |
2019年 | 161篇 |
2018年 | 183篇 |
2017年 | 179篇 |
2016年 | 212篇 |
2015年 | 201篇 |
2014年 | 286篇 |
2013年 | 407篇 |
2012年 | 279篇 |
2011年 | 322篇 |
2010年 | 260篇 |
2009年 | 292篇 |
2008年 | 296篇 |
2007年 | 297篇 |
2006年 | 286篇 |
2005年 | 269篇 |
2004年 | 248篇 |
2003年 | 191篇 |
2002年 | 198篇 |
2001年 | 157篇 |
2000年 | 141篇 |
1999年 | 147篇 |
1998年 | 136篇 |
1997年 | 106篇 |
1996年 | 80篇 |
1995年 | 86篇 |
1994年 | 79篇 |
1993年 | 43篇 |
1992年 | 36篇 |
1991年 | 34篇 |
1990年 | 20篇 |
1989年 | 27篇 |
1988年 | 18篇 |
1987年 | 17篇 |
1986年 | 7篇 |
1985年 | 12篇 |
1984年 | 13篇 |
1982年 | 20篇 |
1981年 | 7篇 |
1980年 | 3篇 |
1979年 | 7篇 |
1978年 | 7篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1973年 | 2篇 |
排序方式: 共有6430条查询结果,搜索用时 15 毫秒
101.
Random‐walk models are a versatile tool for modelling dispersion of both passive and active tracers in turbulent flow. The physical and mathematical foundations of stochastic Lagrangian models of turbulent diffusion have become more and more solid over the years. An important aspect of these types of models that has not received much attention is the behaviour of the particles near boundaries. Often, a simple stochastic, numerical scheme is used. Because turbulent mixing in the vertical direction is much more complicated than in the two horizontal directions, it is in the vertical direction that a simple numerical scheme, such as the Euler scheme, may cause problems. In this paper our main goal is the development of an efficient 3D particle transport model that can be used in stratified flow. For this type of situation the vertical direction is of special interest. First, a closer look is taken at some considerations that should be regarded when choosing a numerical scheme. Specifically schemes are investigated that can be used in the vertical direction, where the diffusion coefficient is varying in that direction. Experiments are performed regarding the accuracy of different numerical schemes in various situations. The behaviour of the particles near an impermeable layer interface is investigated. The stochastic Heun and Runge–Kutta schemes turn out to be very attractive for this type of model. For the simulation of the transport of various physical quantities, such as salinity, heat, silt, oxygen, or bacteria, different types of models are available. In this case we will take a closer look at the modelling of the transport of pollutants from point sources (either instantaneous or continuous transport). For this purpose a 3D particle transport model has been developed that is especially suited for stratified situations such as can be found in estuaries. The main idea is to use a simple numerical scheme for the horizontal directions and a higher‐order method for the vertical direction. The results play an important role in making specific choices for this type of particle transport model. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
102.
The production and dispersal of airborne dust is an important issue in both environmental and industrial contexts. Dust pollution is a major environmental concern, and long exposure in occupational settings has been linked with numerous respiratory health issues. Industrial dust pollution can also present a significant explosion hazard, even in facilities with dust extraction systems. Computational models for dust generation and dispersal have, however, generally been formulated for specific geophysical applications and restricted to static, two‐dimensional, approaches. Here, we present a method for simulating dust production from a dynamic granular bed by using a three‐dimensional coupled discrete element method and Navier–Stokes computational model. Dust production is based on an energy formulation in which micro‐scale dust particles are assumed to overcome cohesion to macro‐scale grains. This model is used over the entire range of energies present within the system, from macro‐scale collisions to aerodynamic entrainment and bombardment of micro‐scale particles. The dust concentration is modelled as a scalar density field, which is advected and diffused through turbulence in the gas flow field. The model is tested against empirical predictions for two test cases, a slug of granular material dropped from a set height and air flow over a granular stockpile. Both give good agreement to the empirical relations, showing that the model can accurately predict the production and subsequent dispersal of dust from a dynamic granular bed. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
103.
《Particuology》2014
Concern over the health effects of fine particles in the ambient environment led the U.S. Environmental Protection Agency to develop the first standard for PM2.5 (particulate matter less than 2.5 μm) in 1997. The Particle Technology Laboratory at the University of Minnesota has helped to establish the PM2.5 standard by developing many instruments and samplers to perform atmospheric measurements. In this paper, we review various aspects of PM2.5, including its measurement, source apportionment, visibility and health effects, and mitigation. We focus on PM2.5 studies in China and where appropriate, compare them with those obtained in the U.S. Based on accurate PM2.5 sampling, chemical analysis, and source apportionment models, the major PM2.5 sources in China have been identified to be coal combustion, motor vehicle emissions, and industrial sources. Atmospheric visibility has been found to correlate well with PM2.5 concentration. Sulfate, ammonium, and nitrate carried by PM2.5, commonly found in coal burning and vehicle emissions, are the dominant contributors to regional haze in China. Short-term exposure to PM2.5 is strongly associated with the increased risk of morbidity and mortality from cardiovascular and respiratory diseases in China. The strategy for PM2.5 mitigation must be based on reducing the pollutants from the two primary sources of coal-fired power plants and vehicle emissions. Although conventional Particulate Emission Control Devices (PECD) such as electrostatic precipitators in Chinese coal-fired power plants are generally effective for large particles, most of them may not have high collection efficiency of PM2.5. Baghouse filtration is gradually incorporated into the PECD to increase the PM2.5 collection efficiency. By adopting stringent vehicle emissions standard such as Euro 5 and 6, the emissions from vehicles can be gradually reduced over the years. An integrative approach, from collaboration among academia, government, and industries, can effectively manage and mitigate the PM2.5 pollution in China. 相似文献
104.
M.D. Scharpenberg M. Luk
ov‐Medviov 《ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik》2012,92(10):770-781
The Fokker‐Planck equation describes the evolution of the probability density for a stochastic ordinary differential equation (SODE) or a deterministic ordinary differential equation (ODE) with stochastic initial values. A solution strategy for this partial differential equation (PDE) up to a relatively large number of dimensions is based on particle methods using Gaussians as basis functions. An initial probability density is decomposed into a sum of multivariate normal distributions and these are propagated according to the ODE. The decomposition as well as the propagation is subject to possibly large numerical errors due to the difficulty to control the spatial residual over the whole domain. In this paper a new particle method is derived, which allows a deterministic error control for the resulting probability density. It is based on global optimization and allows an adaption of an efficient surrogate model for the residual estimation. 相似文献
105.
Navier–Stokes computations of a wave–structure interaction are performed with the aim of assessing the potential of smoothed particle hydrodynamics to accurately estimate impact loading time history. A three‐dimensional dam‐break flow with a rectangular column located downstream is considered. The net force and impulse exerted on the column is monitored throughout the simulation with the results correlating well with existing experimental data. Initial and boundary conditions and numerical parameters are varied and their effect on the column load investigated. The column load is found to be most sensitive to the choice of boundary treatment. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
106.
Wave interaction with bodies is an important practical application for smoothed particle hydrodynamics (SPH) which in principle applies to steep and breaking waves without special treatment. However, few detailed tests have been undertaken even with small amplitude waves. In order to reduce computer time a variable particle mass distribution is tested here with fine resolution near the body and coarse resolution further away, while maintaining a uniform kernel size. We consider two well‐defined test cases, in two dimensions, of waves generated by a heaving semi‐immersed cylinder and progressive waves interacting with a fixed cylinder. But first, still water with hydrostatic pressure is tested. The open‐source code SPHysics ( http://www.sphysics.org )§Update made here after initial online publication. is used with a Riemann solver in an Arbitrary Lagrangian–Eulerian formulation. For the heaving cylinder, SPH results for far field wave amplitude and cylinder force show good agreement with the data of Yu and Ursell (J. Fluid Mech. 1961; 11 :529–551). For wave loading on a half‐submerged cylinder the agreement with the experimental data of Dixon et al. (J. Waterway Port Coastal Ocean Div. 1979; 105 :421–438) for the root mean square force is within 2%. For more submerged cases, the results show some discrepancy, but this was also found with other modelling approaches. The sensitivity of results to the value of the slope limiter used in the MUSCL‐based Riemann solver is demonstrated. The variable mass distribution leads to a computer run speedup of nearly 200% in these cases. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
107.
Negatively buoyant jets consist in a dense fluid injected vertically upward into a lighter ambient fluid. The numerical simulation of this kind of buoyancy‐driven flows is challenging as it involves multiple fluids with different physical properties. In the case of immiscible fluids, it requires, in addition, to track the motion of the interface between fluids and accurately represent the discontinuities of the flow variables. In this paper, we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method and compare the two‐dimensional numerical results with experiments on the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter have been varied to cover a wide range of Froude Fr and Reynolds Re numbers ( 0.1 < Fr < 30, 8 < Re < 1350), reproducing both weak and strong laminar fountains. The flow behaviors observed for the different numerical simulations fit in the regime map based on the Re and Fr values of the experiments, and the maximum fountain height is in good agreement with the experimental observations, suggesting that particle finite element method is a useful tool for the study of immiscible two‐fluid systems. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
108.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
109.
The Kuramoto–Sivashinsky equation plays an important role as a low‐dimensional prototype for complicated fluid dynamics systems having been studied due to its chaotic pattern forming behavior. Up to now, efforts to carry out data assimilation with this 1‐D model were restricted to variational adjoint methods domain and only Chorin and Krause (Proc. Natl. Acad. Sci. 2004; 101 (42):15013–15017) tested it using a sequential Bayesian filter approach. In this work we compare three sequential data assimilation methods namely the Kalman filter approach, the sequential Monte Carlo particle filter approach and the maximum likelihood ensemble filter methods. This comparison is to the best of our knowledge novel. We compare in detail their relative performance for both linear and nonlinear observation operators. The results of these sequential data assimilation tests are discussed and conclusions are drawn as to the suitability of these data assimilation methods in the presence of linear and nonlinear observation operators. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
110.
Simulation of nano‐scale channel flows using a coupled Navier–Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi‐physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub‐domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier–Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier–Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro‐scale MD problems are constructed to provide viscous stresses for the Navier–Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite‐volume discretization are evaluated using MD. The second example deals with fully developed three‐dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier–Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite‐volume discretization of the macro‐domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro‐scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献