首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   6篇
  国内免费   5篇
化学   124篇
数学   4篇
物理学   18篇
  2024年   1篇
  2023年   1篇
  2022年   29篇
  2021年   26篇
  2020年   8篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2016年   9篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   1篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
141.
Mahonia aquifolium and its secondary metabolites have been shown to have anticancer potential. We performed MTT, scratch, and colony formation assays; analyzed cell cycle phase distribution and doxorubicin uptake and retention with flow cytometry; and detected alterations in the expression of genes involved in the formation of cell–cell interactions and migration using quantitative real-time PCR following treatment of lung adenocarcinoma cells with doxorubicin, M. aquifolium extracts, or their combination. MTT assay results suggested strong synergistic effects of the combined treatments, and their application led to an increase in cell numbers in the subG1 phase of the cell cycle. Both extracts were shown to prolong doxorubicin retention time in cancer cells, while the application of doxorubicin/extract combination led to a decrease in MMP9 expression. Furthermore, cells treated with doxorubicin/extract combinations were shown to have lower migratory and colony formation potentials than untreated cells or cells treated with doxorubicin alone. The obtained results suggest that nontoxic M. aquifolium extracts can enhance the activity of doxorubicin, thus potentially allowing the application of lower doxorubicin doses in vivo, which may decrease its toxic effects in normal tissues.  相似文献   
142.
Inhibition of the EGFR signaling pathway is one of the attractive therapeutic targets for pancreatic cancer as recent studies demonstrated that EGFR is over‐expressed in pancreatic cancer. In this article we have demonstrated the design of targeted drug delivery system containing Bovine Serum Albumin (BSA) microspheres as delivery vehicle, gemcitabine as anticancer drug and anti‐EGFR (epidermal growth factor receptor) monoclonal antibody as targeting agent. The conjugated BSA microspheres were characterized by several physico‐chemical techniques such as scanning electron microscope, optical microscopy, fluorescent microscopy etc. Administration of these BSA microspheres containing gemcitabine and anti‐EGFR (BSA‐Gem‐EGFR) shows significant inhibition of pancreatic cancer cells (AsPC1) compared to the cells treated with only BSA microspheres, BSA with gemcitabine (BSA‐Gem), and free gemcitabine. This strategy could be used as a generalized approach for the treatment of pancreatic cancer along with other cancers which overexpress EGFR on cell surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
143.
The aim of the present study was to identify the structure of active compounds in Cyathus stratus that previously demonstrated anti-pancreatic cancer activity. The active compounds were purified from a crude extract by a series of RP-18 preparative chromatography using homemade octadecyl silica gel column. HPLC injection of the crude extract revealed a chromatogram with three main peaks with retention times (RT) 15.6, 18.2, and 22.5 min. Each fraction that exhibited promising activity in vitro was further separated using various available chromatographic techniques. The purified compound with the ultimate anti-cancer activity appeared at RT of 15.8 in the HPLC chromatogram with more than 90% purity. The main peak at the mass spectra appeared at m/z = 446.2304 with the calculated molecular formula of C25H34O7. One- and two-dimensional NMR analyses indicated that the structure of the active molecule (peak 15.8 min in HPLC) was identified as striatal C. Exposure of human pancreatic cancer cells to purified striatal C resulted in induction of apoptosis. Further studies are needed in order to develop a method for the synthesis of striatal in order to use it in clinical studies for treatment of cancer.  相似文献   
144.
Pancreatic adenocarcinoma is by far the deadliest type of cancer. Inflammation is one of the important risk factors in tumor development. However, it is not yet clear whether deterioration in pancreatic cancer patients is related to inflammation, as well as the underlying mechanism. In addition, JNK is abnormally activated in pancreatic cancer cells and the JNK inhibitor C66 reduces the inflammatory microenvironment in the tumor. Therefore, the aim of this study was to evaluate the role of C66 in the proliferation and migration of pancreatic cancer. Our results showed that various inflammatory cytokines, such as IL-1β, IL-6, IL-8, and IL-15, were more expressed in pancreatic cancer than in the matching normal tissue. Furthermore, C66, a curcumin analogue with good anti-inflammatory activity, inhibited the proliferation and migration of pancreatic cancer cells in a dose-dependent manner, and effectively inhibited the expression of the above inflammatory factors. Our previous research demonstrated that C66 prevents the inflammatory response by targeting JNK. Therefore, in this study, JNK activity in pancreatic cancer cells was investigated, revealing that JNK was highly activated, and the treatment with C66 inhibited the phosphorylation of JNK. Next, shJNK was used to knockdown JNK expression in pancreatic cancer cells to further confirm the role of JNK in the proliferation and migration of this tumor, as well as in the inflammatory tumor microenvironment (TME). The results demonstrated that JNK knockdown could significantly inhibit the proliferation and migration of pancreatic cancer. Moreover, the low JNK expression in pancreatic cancer cells significantly inhibited the expression of various inflammatory factors. These results indicated that C66 inhibited the progression of pancreatic cancer through the inhibition of JNK-mediated inflammation.  相似文献   
145.
As an exceptional Fenton-like reagent, cerium oxide (CeO2) finds applications in biomedical science and organic pollutants treatment. The Fenton-like reaction catalyzed by CeO2 typically encompasses two distinct processes: one resembling the classical Fenton reaction, wherein cerium (Ce3+) triggers the decomposition of hydrogen peroxide (H2O2) to yield reactive oxygen species (ROS), and the other involves the complexation of H2O2 on the Ce3+ surface, leading to the formation of peroxides. However, the influence of diverse CeO2 morphologies on these two reaction pathways has not been comprehensively explored. In this study, CeO2 exhibiting three typical morphologies, rods, cubes, and spheres, were prepared. The generation of ROS and peroxides was evaluated using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction and the reduction current of H2O2, respectively. Moreover, the impacts of pH variations and CeO2/H2O2 concentrations on the production and conversion of these two reaction products were investigated. To corroborate the distinctions between the resultant products and their applicability, apoptosis assays and acid orange 7 (AO7) degradation analyses were performed. Notably, CeO2 rods exhibited the highest proportion of Ce3+, predominantly engaging in complexation with H2O2 to foster peroxide formation, thereby facilitating the robust degradation of AO7. However, the generated peroxides appeared to occupy Ce3+ sites, thereby impeding the H2O2 decomposition process. Conversely, Ce3+ species on the surface of CeO2 cubes were primarily involved in H2O2 decomposition, leading to heightened ROS production, and thus showcasing substantial potential for damaging A549 tumor cells. It is worth noting that the ability of these Ce3+ species to form peroxides through complexation with H2O2 was comparatively reduced. In summation, this study sheds light on the intricate interplay between distinct CeO2 morphologies and their divergent impacts on Fenton-like reactions. These findings expand our comprehension of the influences on its reactivity of CeO2 morphologies and open new insights for applications in diverse domains, from organic dye degradation to tumor therapy.  相似文献   
146.
In order to get insight into the chemical heterogeneities of solid tumors, here we report the first surface‐enhanced Raman scattering (SERS) experiment from normal and altered epithelial layer in human colon carcinoma tissues. The Ag colloidal nanoparticles that can be incorporated into the interstitial space in solid tumors or those penetrating into cytoplasm or nucleus of many cells allowed high quality SERS signal. Different tissue structures of tumor and normal colon have characteristic features in SERS spectra. Prominent SERS features of malignant tissue spectra are related to the strong enhancement of the bands preponderantly attributable to DNA or RNA bases. The preliminary studies demonstrate that it is possible to probe Ag colloidal nanoparticles adsorption onto the tissue resulting in a strong molecular signaling with high specificity and rapid acquisition time using visible laser line excitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号