首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67385篇
  免费   10239篇
  国内免费   2483篇
化学   62631篇
晶体学   917篇
力学   1601篇
综合类   142篇
数学   8973篇
物理学   5843篇
  2023年   42篇
  2022年   235篇
  2021年   402篇
  2020年   676篇
  2019年   2514篇
  2018年   2413篇
  2017年   2797篇
  2016年   3077篇
  2015年   5386篇
  2014年   5122篇
  2013年   7133篇
  2012年   5668篇
  2011年   5401篇
  2010年   4461篇
  2009年   4363篇
  2008年   4696篇
  2007年   4044篇
  2006年   3734篇
  2005年   3463篇
  2004年   2937篇
  2003年   2646篇
  2002年   3251篇
  2001年   1719篇
  2000年   1618篇
  1999年   790篇
  1998年   211篇
  1997年   178篇
  1996年   132篇
  1995年   118篇
  1994年   107篇
  1993年   113篇
  1992年   86篇
  1991年   69篇
  1990年   57篇
  1989年   56篇
  1988年   42篇
  1987年   51篇
  1986年   40篇
  1985年   30篇
  1984年   32篇
  1983年   11篇
  1982年   32篇
  1981年   26篇
  1980年   28篇
  1979年   32篇
  1978年   26篇
  1977年   13篇
  1976年   10篇
  1975年   3篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
22.
A graph G is N2locally connected if for every vertex ν in G, the edges not incident with ν but having at least one end adjacent to ν in G induce a connected graph. In 1990, Ryjá?ek conjectured that every 3‐connected N2‐locally connected claw‐free graph is Hamiltonian. This conjecture is proved in this note. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 142–146, 2005  相似文献   
23.
24.
The turbulent flow in a compound meandering channel with a rectangular cross section is one of the most complicated turbulent flows, because the flow behaviour is influenced by several kinds of forces, including centrifugal forces, pressure‐driven forces and shear stresses generated by momentum transfer between the main channel and the flood plain. Numerical analysis has been performed for the fully developed turbulent flow in a compound meandering open‐channel flow using an algebraic Reynolds stress model. The boundary‐fitted coordinate system is introduced as a method for coordinate transformation in order to set the boundary conditions along the complicated shape of the meandering open channel. The turbulence model consists of transport equations for turbulent energy and dissipation, in conjunction with an algebraic stress model based on the Reynolds stress transport equations. With reference to the pressure–strain term, we have made use of a modified pressure–strain term. The boundary condition of the fluctuating vertical velocity is set to zero not only for the free surface, but also for computational grid points next to the free surface, because experimental results have shown that the fluctuating vertical velocity approaches zero near the free surface. In order to examine the validity of the present numerical method and the turbulent model, the calculated results are compared with experimental data measured by laser Doppler anemometer. In addition, the compound meandering open channel is clarified somewhat based on the calculated results. As a result of the analysis, the present algebraic Reynolds stress model is shown to be able to reasonably predict the turbulent flow in a compound meandering open channel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
25.
26.
基于BDF的无约束优化方法的收敛性分析   总被引:3,自引:0,他引:3  
罗新龙 《计算数学》2003,25(2):177-184
1.介 绍 在上个世纪的七十年代末、八十年代初,基于常微分方程的优化方法或者说同伦方法是一类与拟牛顿法和共轭梯度法等我们所熟知的优化方法相竞争的重要方法[1-6,8,13,14,16].由于这类方法只是简单地利用现成的数值求解常微分方程的软件包,如CVODE[7]、LSODE[12],对同伦方程(一般是一个常微分方程的初值问题)进行计算,除了一些特殊的病态问题  相似文献   
27.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   
28.
A lithium(I) coordination polymer has been formed from LiClO4 and the 2,2′‐bipyrimidine (bpym) ligand in which each square pyramidal lithium(I) atom is coordinated in the basal plane by four nitrogen donor atoms derived from two bpym ligands and one water molecule at the apical position. These are connected into a layer structure via hydrogen‐bonding interactions involving the perchlorate anions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
29.
30.
A tridentate ligand, BPIEP: 2,6‐bis[1‐(2,6‐diisopropyl phenylimino) ethyl] pyridine, having central pyridine unit and two peripheral imine coordination sites was effectively employed in controlled/“living” radical polymerization of MMA at 90°C in toluene as solvent, CuIBr as catalyst, and ethyl‐2‐bromoisobutyrate (EBiB) as initiator resulting in well‐defined polymers with polydispersities Mw/Mn ≤ 1.23. The rate of polymerization follows first‐order kinetics, kapp = 3.4 × 10?5 s?1, indicating the presence of low radical concentration ([P*] ≤ 10?8) throughout the reaction. The polymerization rate attains a maximum at a ligand‐to‐metal ratio of 2:1 in toluene at 90°C. The solvent concentration (v/v, with respect to monomer) has a significant effect on the polymerization kinetics. The polymerization is faster in polar solvents like, diphenylether, and anisole, as compared to toluene. Increasing the monomer concentration in toluene resulted in a better control of polymerization. The molecular weights (Mn,SEC) increased linearly with conversion and were found to be higher than predicted molecular (Mn,Cal). However, the polydispersity remained narrow, i.e., ≤1.23. The initiator efficiency at lower monomer concentration approaches a value of 0.7 in 110 min as compared to 0.5 in 330 min at higher monomer concentration. The aging of the copper salt complexed with BPIEP had a beneficial effect and resulted in polymers with narrow polydispersitities and higher conversion. PMMA obtained at room temperature in toluene (33%, v/v) gave PDI of 1.22 (Mn = 8500) in 48 h whereas, at 50°C the PDI is 1.18 (Mn = 10,300), which is achieved in 23 h. The plot of lnkapp versus 1/T gave an apparent activation energy of polymerization as (ΔEapp) 58.29 KJ/mol and enthalpy of equilibrium (ΔH0eq) to 28.8 KJ/mol. Reverse ATRP of MMA was successfully performed using AIBN in bulk as well as solution. The controlled nature of the polymerization reaction was established through kinetic studies and chain extension experiments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4996–5008, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号