首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1057篇
  免费   127篇
  国内免费   16篇
化学   341篇
晶体学   112篇
力学   13篇
综合类   1篇
数学   8篇
物理学   725篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   9篇
  2020年   15篇
  2019年   12篇
  2018年   18篇
  2017年   36篇
  2016年   40篇
  2015年   15篇
  2014年   15篇
  2013年   115篇
  2012年   40篇
  2011年   125篇
  2010年   57篇
  2009年   71篇
  2008年   58篇
  2007年   70篇
  2006年   57篇
  2005年   50篇
  2004年   42篇
  2003年   34篇
  2002年   37篇
  2001年   27篇
  2000年   32篇
  1999年   47篇
  1998年   30篇
  1997年   16篇
  1996年   10篇
  1995年   16篇
  1994年   20篇
  1993年   10篇
  1992年   6篇
  1991年   6篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   8篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有1200条查询结果,搜索用时 234 毫秒
101.
The preparation of sodium phosphate glasses singly and doubly doped with rare earth ions Ce3+ and Eu3+ by melt quench method is described. The spectroscopic characterizations of the samples are done using absorption, excitation and emission spectra. The nonradiative energy transfer between trivalent cerium and europium is achieved through the phosphate lattice and the results are incorporated. The main reason of quenching of Ce3+ ions and the mechanism of energy transfer is mainly electric dipole-dipole in nature for Ce3+:Eu3+ system.  相似文献   
102.
An investigation was made into the thermal stability and mechanical behavior under nanoindentation of a new glassy alloy with composition Ni50Nb28Zr22, produced in the form of melt-spun ribbons and copper mold-cast wedges. The alloy composition was designed based on the lambda criterion combined with the electronegativity difference among the elements. X-ray diffraction and scanning electron microscopy confirmed that the ribbons and wedges (up to 200 μm in thickness) are amorphous. The thermal properties of these samples were evaluated by differential scanning calorimetry (DSC). Nanoindentation revealed that the hardness of this alloy, around 10 GPa, is among the highest reported for metallic glasses. Remarkably, the cast wedge exhibits greater hardness and higher elastic modulus than the ribbon. This correlates with the larger amount of frozen-in free volume in the ribbons than in the cast wedges, as evidenced by DSC. In addition, finite element simulations of nanoindentation curves were performed. The Mohr-Coulomb yield criterion allows for better adjustment of the experimental data than the pressure-independent Tresca yield criterion. The simulations also reveal that the cohesive stress in the ribbons is lower than in the wedges, which explains the difference in hardness and Young's modulus between the two samples.  相似文献   
103.
Ho3+-doped low-phonon-energy heavy-metal gallate glasses (LKBPBG) have been prepared and efficient 1.199 μm emission originating from the 5I6 → 5I8 radiative transition has been observed under 900 nm excitation. The spontaneous emission probability and the maximum stimulated emission cross-section were derived to be 294.31 s− 1 and 3.46 × 10− 21 cm2, respectively. The ratio of quantum yields between ~ 1.2 and ~ 2.0 μm emissions was identified to be 16%, demonstrating that the 5I6 → 5I8 transition is favorable for optical amplification. The maximum gain coefficient of 1.84 dB/cm at 1.199 μm wavelength was anticipated in the ideal status. These results indicate that the Ho3+-doped LKBPBG glasses have a promising potential for the development of ~ 1.2 μm signal amplifier devices.  相似文献   
104.
High silica glass doped with Eu2+ ions was prepared as a scintillating material by impregnation of Eu ions into a porous silica glass followed by reduction sintering in CO atmosphere. A dominant emission band of the Eu2+ 5d–4f transition peaking around 430 nm was observed in the luminescence spectrum with the excitation peak around 280 nm and no emission from Eu3+ was present. Photoluminescence decay kinetics was governed by decay times of a few microseconds. The Eu2+‐doped high silica glass exhibited comparable energy resolution and slightly higher photoelectron yield with respect to the Bi4Ge3O12 crystal in the pulse height spectra for X‐ray photon energies within 22–60 keV. Furthermore, a factor of 1.2 higher radioluminescence intensity was observed as well. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
105.
Results of crystallization kinetics, viscosity, specific heat, thermal stability, and glass forming ability of Se85−xSb15Snx (x=10, 11, 12.5, and 13) chalcogenide glasses, using differential scanning calorimeter (DSC), under non-isothermal condition have been reported and discussed. The variation of the peak temperature of crystallization Tp with the heating rate β has been used to investigate the growth kinetics using Kissinger, Takhor, and Augis-Bennet models. The activation energy of crystallization Ec has been found to increase with Sn content and the crystal growth occurs in one dimension. The increasing trend of Ec is interpreted in terms of enhancement of the degree of cross-linking due to the formation of SnSe4/2 structural units of energies higher than that of Se-Se and Se-Sb bond energies. The viscosity η against 1/T curves has also been drawn and indicated that the atoms of ternary Se-Sb-Sn glasses required more energy, with the addition of Sn, to complete the transformation from amorphous to crystalline state. The demand for thermal stability has been ensured through the calculations of the enthalpy released ΔHc during the crystallization process and S-parameter, while the obtained values of the reduced glass transition temperature Trg and Hurby number HR have been used to estimate the glass forming ability (GFA). Results reveal that, both thermal stability and GFA enhanced with increasing Sn content and the studied samples were prepared from strong glass-forming liquids. The obtained values for the specific heat difference ΔCp, between the equilibrium liquid and the glass, have been found to decrease with increasing Sn content and are in support of the results of thermal stability and GFA.  相似文献   
106.
Sodium borophosphate glasses doped with copper ions having general composition 20Na2O-20ZnO-25B2O3-(35-x) P2O5-x CuO (x=1-8 mol %) were prepared using conventional melt-quench method and characterized by density, UV-visible optical absorption, photoluminescence and conductivity measurements. Eoptical values for different glass samples are found to decrease systematically from 3.5 to 2.5 eV with increase in CuO content in the glass. Network modifying action of CuO with the glass network has been confirmed from the UV-visible optical absorption studies. Presence of Copper in the form of Cu+ species has been confirmed from photoluminescence measurements. The electrical conductivity (σ) increases with increase in copper oxide content in the glass and temperature dependence of electrical conductivity confirmed the semiconducting nature of the samples.  相似文献   
107.
Li2O-ZrO2-SiO2: Ho3+ glasses mixed with three interesting d-block elemental oxides, viz., Nb2O5, Ta2O5 and La2O3, were prepared. Optical absorption and photoluminescence spectra of these glasses have been recorded at room temperature. The luminescence spectra of Nb2O5 and Ta2O5 mixed Li2O-ZrO2-SiO2 glasses (free of Ho3+ ions) have also exhibited broad emission band in the blue region. This band is attributed to radiative recombination of self-trapped excitons (STEs) localized on substitutionally positioned octahedral Ta5+ and Nb5+ ions in the glass network. The Judd-Ofelt theory was successfully applied to characterize Ho3+ spectra of all the three glasses. From this theory various radiative properties, like transition probability A, branching ratio βr and the radiative lifetime τr, for 5S2 emission levels in the spectra of these glasses have been evaluated. The radiative lifetime for 5S2 level of Ho3+ ions has also been measured and quantum efficiencies were estimated. Among the three glasses studied the La2O3 mixed glass exhibited the highest quantum efficiency. The reasons for such higher value have been discussed based on the relationship between the structural modifications taking place around the Ho3+ ions.  相似文献   
108.
The effect of Li2O content in vanadyl doped 20ZnO+xLi2O+(30−x)Na2O+50B2O3 (5≤x≥25) glasses has been studied with respect to their physical and structural properties. The absence of sharp peaks in XRD spectra of these glass samples confirms the amorphous nature. The physical parameters like density, refractive index, ionic concentration and electronic polarizability vary non-linearly with x mol% depending on the diffusivities of alkali ions. EPR and optical absorption spectra reveal that the resonance signals are characteristics of VO2+ ions in tetragonally compressed octahedral site. Spin-Hamiltonian, crystal field, tetragonal field and bonding parameters are found to be in good agreement with the other reported glass systems. The tetragonal distortion (g-g) and Dt reveals that their values vary non-linearly with Li2O content and reaches a minimum at x=10 mol%. An anomaly of character has been observed in all the properties of vanadyl doped glass systems, which gives a clear indication of mixed alkali effect.  相似文献   
109.
Glasses with composition xWO3·(30−x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm−1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.  相似文献   
110.
Quinary Ti-Zr-Hf-Cu-Ni high-entropy metallic glass thin films were produced by magnetron sputter deposition. Nanoindentation tests indicate that the deposited film exhibits a relatively large hardness of 10.4±0.6 GPa and a high elastic modulus of 131±11 GPa under the strain rate of 0.5 s−1. Specifically, the strain rate sensitivity of hardness measured for the thin film is 0.05, the highest value reported for metallic glasses so far. Such high strain rate sensitivity of hardness is likely due to the high-entropy effect which stabilizes the amorphous structure with enhanced homogeneity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号