首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2261篇
  免费   285篇
  国内免费   331篇
化学   2797篇
晶体学   2篇
力学   3篇
综合类   9篇
物理学   66篇
  2023年   38篇
  2022年   202篇
  2021年   249篇
  2020年   173篇
  2019年   135篇
  2018年   111篇
  2017年   98篇
  2016年   117篇
  2015年   125篇
  2014年   114篇
  2013年   185篇
  2012年   103篇
  2011年   111篇
  2010年   84篇
  2009年   109篇
  2008年   77篇
  2007年   88篇
  2006年   84篇
  2005年   72篇
  2004年   69篇
  2003年   81篇
  2002年   66篇
  2001年   41篇
  2000年   47篇
  1999年   36篇
  1998年   29篇
  1997年   37篇
  1996年   24篇
  1995年   49篇
  1994年   27篇
  1993年   24篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   1篇
  1986年   7篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1973年   1篇
排序方式: 共有2877条查询结果,搜索用时 31 毫秒
201.
Pleurotus geesteranus is a promising source of bioactive compounds. However, knowledge of the antioxidant behaviors of P. geesteranus protein hydrolysates (PGPHs) is limited. In this study, PGPHs were prepared with papain, alcalase, flavourzyme, pepsin, and pancreatin, respectively. The antioxidant properties and cytoprotective effects against oxidative stress of PGPHs were investigated using different chemical assays and H2O2 damaged PC12 cells, respectively. The results showed that PGPHs exhibited superior antioxidant activity. Especially, hydrolysate generated by alcalase displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (91.62%), 2,2-azino-bis (3-ethylbenzothia zoline-6-sulfonic acid) (ABTS) radical scavenging activity (90.53%), ferric reducing antioxidant power, and metal ion-chelating activity (82.16%). Analysis of amino acid composition revealed that this hydrolysate was rich in hydrophobic, negatively charged, and aromatic amino acids, contributing to its superior antioxidant properties. Additionally, alcalase hydrolysate showed cytoprotective effects on H2O2-induced oxidative stress in PC12 cells via diminishing intracellular reactive oxygen species (ROS) accumulation by stimulating antioxidant enzyme activities. Taken together, alcalase hydrolysate of P. geesteranus protein can be used as beneficial ingredients with antioxidant properties and protective effects against ROS-mediated oxidative stress.  相似文献   
202.
Boron‐containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron‐containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2(OH)xO(3?x/2) (x=0–6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM‐22 isomorphously substituted with boron (B‐MWW). Using 11B solid‐state NMR spectroscopy, we show that the majority of boron species in B‐MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B‐MWW for ODH of propane falsifies the hypothesis that site‐isolated BO3 units are the active site in boron‐based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium‐based catalysts and provides an important piece of the mechanistic puzzle.  相似文献   
203.
While oxidation of 5,5′,15,15′‐tetramesityl‐10‐10′‐linked 3NH‐corrole dimer with DDQ gave the corresponding triply linked 2NH‐corrole tape, the use of an equimolar amount of p‐chloranil as a milder oxidant resulted in the formation of a 10‐10′‐linked neutral 2NH‐corrole radical dimer as a stable product. The stability of this peculiar product is ascribed largely to strong antiferromagnetic interaction of the two spins. Further oxidation of this diradical produced corrole tape, suggesting its involvement as a reaction intermediate to the corrole tape. Oxidation of 10‐10′‐linked bis‐pyridine‐coordinated CoIII corrole dimer with DDQ produced a cobalt corrole radical dimer and a doubly linked corrole dimer both as stable compounds bearing pyridine and cyanide axial ligands. This type of oxidative transformation involving neutral diradical intermediates is a unique reaction mechanism specific for corrole dimers.  相似文献   
204.
A stereoselective Pd(PPh3)4‐catalyzed C?F bond alkynylation of tetrasubstituted gem‐difluoroalkenes with terminal alkynes has been developed. This method gives access to a great variety of conjugated monofluoroenynes bearing a tetrasubstituted alkene moiety with well‐defined stereochemistry. Chelation‐assisted oxidative addition of Pd to the C?F bond is proposed to account for the high level of stereocontrol. An X‐ray crystal structure of a key monofluorovinyl PdII intermediate has been obtained for the first time as evidence for the proposed mechanism.  相似文献   
205.
Abstract

The new guanidine alkaloid Dendrobeaniamine A (1) was isolated from the organic extract of the Arctic marine bryozoan Dendrobeania murrayana. The chemical structure of 1 was elucidated by spectroscopic experiments, including 1D and 2D NMR and HRESIMS analysis. Compound 1 is a lipoamino acid, consisting of a C12 fatty acid anchored to the amino acid arginine. The bioactivity of 1 was evaluated using cellular and biochemical assays, but the compound did not show cytotoxic, antimicrobial, anti-inflammatory or antioxidant activities  相似文献   
206.
Recently the connection between oxidative stress and various diseases, including cancer and Alzheimer's, attracts notice as a pathway suitable for diagnostic purposes. 8‐Oxo‐deoxyguanosine and 8‐oxo‐deoxyadenosine produced from the interaction of reactive oxygen species with DNA become prominent as biomarkers. Several methods have been developed for their determination in biofluids, including solid‐phase extraction and enzyme‐linked immunosorbent assays. However, still, there is a need for reliable and fast analytical methods. In this context, solid‐phase microextraction offers many advantages such as flexibility in geometry and applicable sample volume, as well as high adaptability to high‐throughput sampling. In this study, a solid‐phase microextraction method was developed for the determination of 8‐oxo‐deoxyguanosine and 8‐oxo‐deoxyadenosine in biofluids. The extractive phase of solid‐phase microextraction consisted of hydrophilic–lipophilic balanced polymeric particles. In order to develop a solid‐phase microextraction method suitable for the determination of the analytes in saliva and urine, several parameters, including desorption solvent, desorption time, sample pH, and ionic strength, were scrutinized. Analytical figures of merit indicated that the developed method provides reasonable interday and intraday precisions (<15% in both biofluids) with acceptable accuracy. The method provides a limit of quantification for both biomarkers at 5.0 and 10.0 ng/mL levels in saliva and urine matrices, respectively.  相似文献   
207.
Burn wound healing remains a challenging health problem worldwide due to the lack of efficient and precise therapy. Inherent oxidative stress following burn injury is importantly responsible for prolonged inflammation, fibrotic scar, and multiple organ failure. Herein, a bioinspired antioxidative defense system coupling with in situ forming hydrogel, namely, multiresponsive injectable catechol‐Fe3+ coordination hydrogel (MICH) matrix, is engineered to promote burn‐wound dermal repair by inhibiting tissue oxidative stress. This MICH matrix serves as the special traits of “Fe‐superoxide dismutases,” small molecular antioxidant (vitamin E), and extracellular matrix (ECM) in alleviating cellular oxidative damage, which demonstrates precise scavenging on reactive oxygen species (ROS) of different cellular locations, blocking lipid peroxidation and cell apoptosis. In in vivo burn‐wound treatment, this MICH promptly integrates with injured surrounding tissue to provide hydration microenvironment and physicochemical ECM for burn wounds. Importantly, the MICH matrix suppresses tissue ROS production, reducing the inflammatory response, prompting re‐epithelization and neoangiogenesis during wound healing. Meanwhile, the remodeling skin treated with MICH matrix demonstrates low collagen deposition and normal dermal collagen architecture. Overall, the MICH prevents burn wound progression and enhances skin regeneration, which might be a promising biomaterial for burn‐wound care and other disease therapy induced by oxidative stress.  相似文献   
208.
The reduction of free radicals by bioactive membranes used for hemodialysis treatment is an important topic due to the constant rise of oxidative stress‐associated cardiovascular mortality by hemodialysis patients. Therefore, it is urgent to find an effective solution that helps to solve this problem. Polysulfone membranes enriched with α‐lipoic acid, α‐tocopherol, and with both components are fabricated by spin coating. The antioxidant properties of these membranes are evaluated in vitro by determining the lipid‐peroxidation level and the total antioxidant status of the blood plasma. The biocompatibility is assessed by quantifying the protein adsorption, platelet adhesion, complement activation, and hemolytic effect. All types of membranes show in vitro antioxidant activity and a trend to reduce oxidative stress in vivo; the best results show membranes prepared with a combination of both compounds and prove to be nonhemolytic and hemocompatible. Moreover, the membrane specific separation ability for the main waste products is not affected by antioxidants incorporation.  相似文献   
209.
We report high‐performance I+/H2O2 catalysis for the oxidative or decarboxylative oxidative α‐azidation of carbonyl compounds by using sodium azide under biphasic neutral phase‐transfer conditions. To induce higher reactivity especially for the α‐azidation of 1,3‐dicarbonyl compounds, we designed a structurally compact isoindoline‐derived quaternary ammonium iodide catalyst bearing electron‐withdrawing groups. The nonproductive decomposition pathways of I+/H2O2 catalysis could be suppressed by the use of a catalytic amount of a radical‐trapping agent. This oxidative coupling tolerates a variety of functional groups and could be readily applied to the late‐stage α‐azidation of structurally diverse complex molecules. Moreover, we achieved the enantioselective α‐azidation of 1,3‐dicarbonyl compounds as the first successful example of enantioselective intermolecular oxidative coupling with a chiral hypoiodite catalyst.  相似文献   
210.
Abstract

A search for bioactive secondary metabolites from the endophytic fungus Fusarium chlamydosporum, isolated from the root of Suaeda glauca, led to the isolation of three indole derivatives (1–3), three cyclohexadepsipeptides (4–6), and four pyrones (7–10). The structures of new (1) and known compounds (2–10) were elucidated on the basis of extensive spectroscopic analysis. All these compounds were evaluated for phytotoxic, antimicrobial activities, and brine shrimp lethality. Compound 1 showed significant phytotoxic activity against the radicle growth of Echinochloa crusgalli, even better than the positive control of 2,4-D. Cyclohexadepsipeptides (4–6) and pyrones (7–10) exhibited brine shrimp lethality, especially 4 and 7 with the LD50 values of 2.78 and 7.40?μg mL?1, respectively, better than the positive control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号