全文获取类型
收费全文 | 14309篇 |
免费 | 1293篇 |
国内免费 | 2899篇 |
专业分类
化学 | 16180篇 |
晶体学 | 112篇 |
力学 | 149篇 |
综合类 | 93篇 |
数学 | 54篇 |
物理学 | 1913篇 |
出版年
2024年 | 38篇 |
2023年 | 182篇 |
2022年 | 382篇 |
2021年 | 491篇 |
2020年 | 595篇 |
2019年 | 483篇 |
2018年 | 407篇 |
2017年 | 395篇 |
2016年 | 606篇 |
2015年 | 588篇 |
2014年 | 690篇 |
2013年 | 1362篇 |
2012年 | 793篇 |
2011年 | 790篇 |
2010年 | 690篇 |
2009年 | 749篇 |
2008年 | 921篇 |
2007年 | 1009篇 |
2006年 | 868篇 |
2005年 | 769篇 |
2004年 | 764篇 |
2003年 | 750篇 |
2002年 | 612篇 |
2001年 | 435篇 |
2000年 | 451篇 |
1999年 | 386篇 |
1998年 | 300篇 |
1997年 | 348篇 |
1996年 | 303篇 |
1995年 | 281篇 |
1994年 | 237篇 |
1993年 | 182篇 |
1992年 | 202篇 |
1991年 | 98篇 |
1990年 | 74篇 |
1989年 | 54篇 |
1988年 | 54篇 |
1987年 | 25篇 |
1986年 | 24篇 |
1985年 | 26篇 |
1984年 | 17篇 |
1983年 | 7篇 |
1982年 | 13篇 |
1981年 | 13篇 |
1980年 | 10篇 |
1978年 | 3篇 |
1977年 | 4篇 |
1976年 | 4篇 |
1974年 | 3篇 |
1973年 | 4篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Praveen K. Tandon Gayatri Sumita Sahgal Manish Srivastava Santosh B. Singh 《应用有机金属化学》2007,21(3):135-138
Catalytic activities of three transition metals, as iridium (III) chloride, rhodium (III) chloride and palladium (II) chloride, were compared in the oxidation of six aromatic aldehydes (benzaldehyde, p‐chloro benzaldehyde, p‐nitro benzaldehyde, m‐nitro benzaldehyde, p‐methoxy benzaldehyde and cinnamaldehyde), two hydrocarbons (viz. (anthracene and phenanthrene)) and one aromatic and one cyclic alcohol (cyclohexanol and benzyl alcohol) by 50% H2O2. The presence of traces (substrate: catalyst ratio equal to 1:62500 to 1:1961) of the chlorides of iridium(III), rhodium(III) and palladium(II) catalyze these oxidations, resulting in good to excellent yields. It was observed that in most of the cases palladium(II) chloride is the most efficient catalyst. Conditions for the highest and most economical yields were obtained. Deviation from the optimum conditions decreases the yields. Oxidation in aromatic aldehydes is selective at the aldehydeic group only and other groups remain unaffected. This new, simple and economical method, which is environmentally safe, also requires less time. Reactive species of catalysts, existing in the reaction mixture are also discussed. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
22.
Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide
as an initiator in dioxane at 65°C±0·l°C. The system follows non-ideal radical kinetics (R
p
∝ [M]1·4 [I]0·44
@#@) due to primary radical termination as well as degradative chain-transfer reaction. The overall activation energy and average
value ofk
2
p
/k
t
were 64 kJmol−1 and 0.173 × 10−3 1 mol−1 s−1 respectively 相似文献
23.
Allison K. O'Brien Neil B. Cramer Christopher N. Bowman 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):2007-2014
The overall effects of oxygen on thiol–acrylate photopolymerizations were characterized. Specially, the choice of thiol monomer chemistry, functionality, and concentration on the extent of oxygen inhibition were considered. As thiol concentration was increased, the degree of oxygen inhibition was greatly reduced because of chain transfer from the peroxy radical to the thiol. When comparing the copolymerization of 1,6‐hexanediol diacrylate with the alkane‐based thiol (1,6‐hexane dithiol) to the copolymerization with the propionate thiol (glycol dimercaptopropionate), it was found that the propionate system was much more reactive and polymerized to a greater extent in the presence of oxygen. In addition, the functionality was considered where the glycol dimercaptopropionate was compared to a tetrafunctional propionate of similar chemistry (pentaerythritol tetrakis(mercaptopropionate)). Given the same thiol concentration, the higher functionality thiol imparted a faster polymerization rate, due to the increased polymer system viscosity, which limited oxygen diffusion and decreased the extent of overall oxygen inhibition. Thus, preliminary insight is provided into how thiol monomer choice affects the extent of oxygen inhibition in thiol–acrylate photopolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2007–2014, 2006 相似文献
24.
Dongheng Zhang Wen-Hua Sun Junxian Hou Suyun Jie Fei Chang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):264-272
The polymerization of cyclopentadiene (CPD) was effectively initiated by methylaluminoxane (MAO) to generate poly(cyclopentadiene) (polyCPD). The effects on the polymerization of some reaction parameters such as the monomer concentration, the initiator concentration, and solvents were investigated. The conversion of CPD was monitored with gas chromatography to investigate the reaction kinetics. The polymerization rate was proportional to the concentrations of MAO in the first order and of the CPD monomer in the second order, and a reasonable cationic polymerization mechanism was suggested on the basis of the kinetic study. PolyCPD obtained at a low temperature could be dissolved in toluene or chloroform, and this indicated lower cross‐coupling during the polymerization reaction. 1H NMR and IR analysis of the polymer indicated that there were almost equal amounts of 1,2‐enchainment and 1,4‐enchainment in the polymer chain. The measurement of polyCPD showed its unique properties as a potential candidate for stable wrappings or electronic packaging materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 264–272, 2006 相似文献
25.
Enrique Saldívar‐Guerra Jos Bonilla Gregorio Zacahua Martha Albores‐Velasco 《Journal of polymer science. Part A, Polymer chemistry》2006,44(24):6962-6979
Mechanisms and simulations of the induction period and the initial polymerization stages in the nitroxide‐mediated autopolymerization of styrene are discussed. At 120–125 °C and moderate 2,2,4,4‐tetramethyl‐1‐piperidinyloxy (TEMPO) concentrations (0.02–0.08 M), the main source of radicals is the hydrogen abstraction of the Mayo dimer by TEMPO [with the kinetic constant of hydrogen abstraction (kh)]. At higher TEMPO concentrations ([N?] > 0.1 M), this reaction is still dominant, but radical generation by the direct attack against styrene by TEMPO, with kinetic constant of addition kad, also becomes relevant. From previous experimental data and simulations, initial estimates of kh ≈ 1 and kad ≈ 6 × 10?7 L mol?1 s?1 are obtained at 125 °C. From the induction period to the polymerization regime, there is an abrupt change in the dominant mechanism generating radicals because of the sudden decrease in the nitroxide radicals. Under induction‐period conditions, the simulations confirm the validity of the quasi‐steady‐state assumption (QSSA) for the Mayo dimer in this regime; however, after the induction period, the QSSA for the dimer is not valid, and this brings into question the scientific basis of the well‐known expression kth[M]3 (where [M] is the monomer concentration and kth is the kinetic constant of autoinitiation) for the autoinitiation rate in styrene polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6962‐6979, 2006 相似文献
26.
Alberto Giaconia Giuseppe Filardo Onofrio Scialdone Alessandro Galia 《Journal of polymer science. Part A, Polymer chemistry》2006,44(13):4122-4135
A laboratory‐scale continuous reaction system using a stirred tank reactor was assembled in our laboratory to study the dispersion polymerization of vinyl monomers in supercritical carbon dioxide (scCO2). The apparatus was equipped with a suitable downstream separation section to collect solid particles entrained in the effluent stream from the reactor, whose monomer concentration could be measured online with a gas chromatograph. The dispersion polymerization of methyl methacrylate in scCO2 was selected as a model process to be investigated in the apparatus. The experiments were performed at 65 °C and 25 MPa with 2,2′‐azobisisobutyronitrile as the initiator and a reactive polysiloxane macromonomer as a surfactant to investigate the effect of the mean residence time of the reaction mixture on the monomer conversion, polymerization rate, polymer molecular weight, and particle size distribution. The results were compared with those obtained in batch polymerizations carried out under similar operative conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4122–4135, 2006 相似文献
27.
Jorge F. J. Coelho Ana M. F. P. Silva Anatoliy V. Popov Virgil Percec Mariana V. Abreu Pedro M. O. F. Gonalves M. H. Gil 《Journal of polymer science. Part A, Polymer chemistry》2006,44(9):3001-3008
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006 相似文献
28.
29.
Xiaoqing Liu Chuncheng Li Dong Zhang Yaonan Xiao 《Journal of Polymer Science.Polymer Physics》2006,44(6):900-913
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006 相似文献
30.
A novel mixed sol method was developed for the preparation of supported catalysts. Analyses by means of XRD and BET show that a 40%AgBiVMoO/γ-Al2O3 catalyst prepared by this method possessed high specific surface area and high dispersion of the active phase. As a result, high acrylic acid selectivity of 8.5% was obtained when the catalyst was used in the reaction of propane partial oxidation to acrylic acid in a fixed-bed reactor. 相似文献