首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   2篇
化学   108篇
数学   1篇
物理学   16篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   17篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   3篇
  2008年   14篇
  2007年   9篇
  2006年   4篇
  2005年   13篇
  2004年   11篇
  2003年   12篇
  2002年   3篇
  2001年   2篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
71.
Abstract

The main aim of this study was to deal with one of the major drawbacks of polypropylene (PP) fibers, i.e., low resiliency and low dyeability, by incorporating polytrimethylene terephthalate (PTT) fibrils, as a dispersed material, and organoclay, as a nano-filler, into the PP polymer matrix. The presence of 10?wt% of PTT and 0.5–1?wt% organoclay in the PP nanocomposite fibers led to an approximately 18.5% and 45.5% increase in the resilience behavior and dye uptake, respectively, compared to pure PP fibers, without using highly toxic carriers. The lowest mean diameter of the nano-fibrils was 75?nm for the hot drawn nanocomposite fiber samples as measured by scanning electron microscopy (SEM). The results of DSC indicated that the presence of both PTT and organoclay significantly influenced the crystallinity of the PP which also confirmed their nucleating effects in the nanocomposite fiber.  相似文献   
72.
Ternary nanocomposites based on polyamide-6, maleated butadiene (core) -acrylonitrile-styrene (shell) rubber particles (PB-g-SAM), and modified montmorillonite (organoclay) were prepared by a twin-screw extruder. The glassy shell of the core-shell particles can act as a barrier which can resist the entrance of clay into the rubber phase. The influence of mixing sequence on the phase morphology and mechanical properties were studied. The microstructure of the ternary nanocomposites was characterized by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. It was found that the clay in the polyamide nanocomposites was partially exfoliated, exhibiting a mixture of exfoliated structures. The organoclay plates affected the interfacial adhesion between the polyamide-6 and the core-shell particles. The location of the organoclay plates in the blends with different mixing sequences produced differences of the mechanical properties. The results of mechanical testing revealed that the optimum mixing sequence to achieve balanced mechanical properties was mixing the polyamide-6 and organoclay first followed by mixing with the core-shell particles.  相似文献   
73.
Morphology, thermal and rheological properties of polymer‐organoclay composites prepared by melt‐blending of polystyrene (PS), poly(methyl methacrylate) (PMMA), and PS/PMMA blends with Cloisite® organoclays were examined by transmission electron microscopy, small‐angle X‐ray scattering, secondary ion mass spectroscopy, differential scanning calorimetry, and rheological techniques. Organoclay particles were finely dispersed and predominantly delaminated in PMMA‐clay composites, whereas organoclays formed micrometer‐sized aggregates in PS‐clay composites. In PS/PMMA blends, the majority of clay particles was concentrated in the PMMA phase and in the interfacial region between PS and PMMA. Although incompatible PS/PMMA blends remained phase‐separated after being melt‐blended with organoclays, the addition of organoclays resulted in a drastic reduction in the average microdomain sizes (from 1–1.5 μm to ca. 300–500 nm), indicating that organoclays partially compatibilized the immiscible PS/PMMA blends. The effect of surfactant (di‐methyl di‐octadecyl‐ammonia chloride), used in the preparation of organoclays, on the PS/PMMA miscibility was also investigated. The free surfactant was more compatible with PMMA than with PS; the surfactant was concentrated in PMMA and in the interfacial region of the blends. The microdomain size reduction resulting from the addition of organoclays was definitely more significant than that caused by adding the same amount of free surfactant without clay. The effect of organoclays on the rheological properties was insignificant in all tested systems, suggesting weak interactions between the clay particles and the polymer matrix. In the PS system, PMMA, and organoclay the extent of clay exfoliation and the resultant properties are controlled by the compatibility between the polymer matrix and the surfactant rather than by interactions between the polymer and the clay surface. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 44–54, 2003  相似文献   
74.
Ethylene‐vinyl acetate copolymer (EVA) with 40 wt.% vinyl acetate content (EVA40)/organoclay nanocomposites were prepared using a melt intercalation method with several different clay concentrations (2.5, 5.0, 7.5, and 10.0 wt.%). X‐ray diffraction confirmed the formation of exfoliated nanocomposite in all cases with disappearance of the characteristic peak corresponding to the d‐spacing of the pristine organoclay. Transmission electron microscopy studies also showed an exfoliated morphology of the nanocomposites. Morphology and thermal properties of the nanocomposites were further examined by means of scanning electron microscopy (SEM) and thermo gravimetric analysis (TGA), respectively. Rheological properties of the EVA40/organoclay nanocomposites were investigated using a rotational rheometer with parallel‐plate geometry in both steady shear and dynamic modes, demonstrating remarkable differences with the clay contents in comparison to that of pure EVA40 copolymer.  相似文献   
75.
The effect of organically modified montmorillonite (OMMT) and silane coupling agent on the abrasion resistance of SiO2-filled butadiene rubber (BR) vulcanizates has been investigated. Various amounts of OMMT are added into SiO2-filled BR vulcanizates. A silane coupling agent, bis-(3-triethoxysilyl propyl) tetrasulfide (Si69), is used to modify OMMT during the masterbatch preparation for evaluating the influence of surface treatment on the abrasion resistance. Incorporation of OMMT into BR results in deterioration of the abrasion resistance as compared to unfilled BR vulcanizate due to poor dispersion of OMMT and insufficient interfacial adhesion between OMMT and BR matrix. The use of Si69 improves dispersion of OMMT particles and rubber/OMMT adhesion, resulting in abrasion resistance enhancement of BR/OMMT vulcanizates. By using similar compounding conditions as those for BR/OMMT vulcanizate, nanodispersion of OMMT in BR/SiO2/OMMT vulcanizate has been achieved as judged by the high viscosity of the SiO2-filled BR compound. This improved dispersion leads to better abrasion resistance of the BR/SiO2/OMMT than that of the BR/SiO2 composite. Utilization of Si69 slightly affects the DIN volume loss of BR/SiO2/OMMT vulcanizates and the abrasion pattern.  相似文献   
76.
Composite materials consisting of poly(butylene succinate) (PBS) and montmorillonite (MMT), modified to various extents using trihexyltetradecylphosphonium chloride (THTDP) cations, were prepared using a simple melt intercalation technique. The surfactant contents were varied, i.e. 0.4, 0.6, 0.8, 1.0, and 1.2 times the cation exchange capacity (CEC) of the MMT. The intercalation of the surfactant molecules into MMT layers, confirmed by the increase in interlayer spacing and significant changes in the morphology of the modified MMT, facilitated the dispersion of the clay in the PBS matrix. The properties of the PBS-based composites were changed with increasing surfactant content. The melting and crystallization temperatures increased and the degree of crystallinity (χc) decreased. The storage modulus was significantly enhanced below the glass transition temperature (Tg), and Tg shifted to a higher temperature, with a maximum at a surfactant loading of 0.6 CEC. The mechanical properties, including tensile strength, flexural strength, flexural modulus and impact strength, increased and then decreased with surfactant loading, with the maximum observed also at a surfactant loading of 0.6 CEC. In conclusion, an ideal balance between thermal and mechanical properties can be obtained at a surfactant quantity equivalent to 0.6 times the clay CEC. Moreover, all the composites exhibited obvious improvement in thermal and mechanical properties as compared to those of neat PBS.  相似文献   
77.
Nanocomposite polyurethane foams filled with different loadings (0.1–0.7 wt.%) of nanosized silica (average grain size of about 7 or 12 nm) and organoclay were prepared by a prepolymer method, and their mechanical properties were investigated. Statistical analysis of the size distribution of the foam cells was successfully applied for the characterization of their morphology. It was shown that the developed approach provided detailed analysis of the morphology development in PU foams, including the primary cell formation and their break-up and coalescence. The degree of phase separation in nanocomposite polyurethane foams in its dependence on nanofiller type and content was calculated from the IR spectra. The presence of silica nanoparticles and organoclays gives rise to significant differences in the mechanical (stress–strain) properties of the nanocomposite polyurethane foams with respect to the pure polymer.  相似文献   
78.
This article surveys the decade of progress accomplished in the application of isoconversional methods to thermally stimulated processes in polymers. The processes of interest include: crystallization and melting of polymers, gelation of polymer solutions and gel melting, denaturation (unfolding) of proteins, glass transition, polymerization and crosslinking (curing), and thermal and thermo‐oxidative degradation. Special attention is paid to the kinetics of polymeric nanomaterials. The article discusses basic principles for understanding the variations in the activation energy and emphasizes the possibility of using models for linking such variations to the parameters of individual kinetic steps. It is stressed that many kinetic effects are not linked to a change in the activation energy alone and may arise from changes in the preexponential factor and reaction model. Also noted is that some isoconversional methods are inapplicable to processes taking place on cooling and cannot be used to study such processes as the melt crystallization.

  相似文献   

79.
The intercalation of aluminosilicate clays proceeds via a critical conformation change. Ion exchange of the poly(oxypropylene)diamine salts allows widening of the clay layers from 12 Å to 20 Å and then a sharp increase to 58 Å. The data indicate a critical conformation change of the intercalated amines, thus providing a new way for manipulating nanomaterials and control of polymer conformations in layered silicate confinement.

Schematic illustration of POP‐amine self‐assembly in silicate confinements.  相似文献   

80.
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号