首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5190篇
  免费   772篇
  国内免费   557篇
化学   3944篇
晶体学   17篇
力学   79篇
综合类   26篇
数学   222篇
物理学   2231篇
  2024年   14篇
  2023年   123篇
  2022年   220篇
  2021年   317篇
  2020年   297篇
  2019年   244篇
  2018年   202篇
  2017年   216篇
  2016年   301篇
  2015年   262篇
  2014年   310篇
  2013年   489篇
  2012年   277篇
  2011年   327篇
  2010年   201篇
  2009年   273篇
  2008年   275篇
  2007年   267篇
  2006年   252篇
  2005年   209篇
  2004年   168篇
  2003年   150篇
  2002年   189篇
  2001年   180篇
  2000年   144篇
  1999年   110篇
  1998年   75篇
  1997年   69篇
  1996年   38篇
  1995年   57篇
  1994年   42篇
  1993年   25篇
  1992年   32篇
  1991年   18篇
  1990年   10篇
  1989年   18篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   15篇
  1984年   16篇
  1983年   6篇
  1982年   8篇
  1981年   5篇
  1979年   6篇
  1978年   8篇
  1977年   6篇
  1976年   9篇
  1975年   5篇
  1973年   3篇
排序方式: 共有6519条查询结果,搜索用时 15 毫秒
121.
122.
123.
We studied the symmetry and spatial uniformity of the orientational order of the biaxial nematic phase in the light of recent experimental observations of phase biaxiality in thermotropic bent-core and calamitic-tetramer nematics. Evidence is presented supporting monoclinic symmetry, instead of the usually assumed orthorhombic symmetry. The use of deuterium nuclear magnetic resonance to differentiate between the possible symmetries is described. The spatial aspects of biaxial order are presented in the context of the cluster model, wherein macroscopic biaxiality can result from the field-induced alignment of biaxial and possibly polar domains. The implications of different symmetries on the alignment of biaxial nematics and on the measurements of biaxial order are discussed in conjunction with the microdomain structure of the biaxial phase.  相似文献   
124.
This article reports a synthetic methodology for single step preparation of telechelic poly(disulfide)s (PDS) by step‐growth polymerization between a di‐thiol and a commercially available monomer 2,2′‐dithiodipyridine in presence of a functional group appended pyridyl disulfide moiety as the “mono‐functional impurity” (MFI). Redox‐destructible well‐defined segmented PDSs with functional chain terminal, predicted and tunable degree of polymerization and narrow polydispersity index (<2.0) could be synthesized under a mild reaction condition. Using an appropriate MFI, PDS could be synthesized with trithiocarbonate chain terminals in a single step, which could be further used as macro chain‐transfer agent (CTA) for chain growth polymerization under RAFT mechanism producing ABA type tri‐block copolymer wherein the B block consists of the degradable PDS chain. By copolymerization between a hydrophobic di‐thiol monomer and a hydroxyl group appended di‐thiol monomer, PDS could be prepared with pendant hydroxyl functional group which was utilized to initiate ring opening polymerization of cyclic lactide monomers producing well‐defined degradable graft‐copolymer. The pendant hydroxyl groups were further utilized to anchor a polar carboxylic group to the degradable PDS backbone which under basic condition showed aqueous self‐assembly generating micelle‐like structure with hydrophobic guest encapsulation ability and glutathione responsive sustained release. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 194–202  相似文献   
125.
126.
127.
3,4-Diaroylfuroxans 1 react with various dipolarophiles 3 under microwave activation to afford the cycloadduct 4 instead of the expected isoxazole 5 in good yields in the absence of solvent.  相似文献   
128.
Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co‐condensation of TEOS with variable amounts (2–5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on‐demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans‐to‐cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on‐command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin‐loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.  相似文献   
129.
Flavonoids are plant bioactives that are recognized as hormone-like polyphenols because of their similarity to the endogenous sex steroids 17β-estradiol and testosterone, and to their estrogen- and androgen-like activity. Most efforts to verify flavonoid binding to nuclear receptors (NRs) and explain their action have been focused on ERα, while less attention has been paid to other nuclear and non-nuclear membrane androgen and estrogen receptors. Here, we investigate six flavonoids (apigenin, genistein, luteolin, naringenin, quercetin, and resveratrol) that are widely present in fruits and vegetables, and often used as replacement therapy in menopause. We performed comparative computational docking simulations to predict their capability of binding nuclear receptors ERα, ERβ, ERRβ, ERRγ, androgen receptor (AR), and its variant ART877A and membrane receptors for androgens, i.e., ZIP9, GPRC6A, OXER1, TRPM8, and estrogens, i.e., G Protein-Coupled Estrogen Receptor (GPER). In agreement with data reported in literature, our results suggest that these flavonoids show a relevant degree of complementarity with both estrogen and androgen NR binding sites, likely triggering genomic-mediated effects. It is noteworthy that reliable protein–ligand complexes and estimated interaction energies were also obtained for some suggested estrogen and androgen membrane receptors, indicating that flavonoids could also exert non-genomic actions. Further investigations are needed to clarify flavonoid multiple genomic and non-genomic effects. Caution in their administration could be necessary, until the safe assumption of these natural molecules that are largely present in food is assured.  相似文献   
130.
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications as spin probes/labels for EPR spectroscopy and imaging, and as polarizing agents for dynamic nuclear polarization. The high hydrophilicity of TAM radicals is essential for their biomedical applications. However, the synthesis of hydrophilic TAM radicals (e.g., OX063) is extremely challenging and has only been reported in the patent literature, to date. Herein, an efficient synthesis of a highly water-soluble TAM radical bis(8-carboxyl-2,2,6,6-tetramethylbenzo[1,2-d:4,5-d′]bis([1,3]dithiol-4-yl)-mono-(8-carboxyl-2,2,6,6-tetrakis(2-hydroxyethyl)benzo[1,2-d:4,5-d′]bis([1,3]dithiol-4-yl)methyl (TFO), which contains four additional hydroxylethyl groups, relative to the Finland trityl radical CT-03, is reported. Similar to OX063, TFO exhibits excellent properties, including high water solubility in phosphate buffer, low log P, low pKa, long relaxation times, and negligible binding with bovine serum albumin. On the other hand, TFO has a sharper EPR line and higher O2 sensitivity than those of OX063. Therefore, in combination with its facile synthesis, TFO should find wide applications in magnetic resonance related fields and this synthetic approach would shed new light on the synthesis of other hydrophilic TAM radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号