首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6959篇
  免费   736篇
  国内免费   161篇
化学   5502篇
晶体学   89篇
力学   189篇
综合类   2篇
数学   107篇
物理学   1967篇
  2024年   13篇
  2023年   73篇
  2022年   190篇
  2021年   232篇
  2020年   366篇
  2019年   247篇
  2018年   171篇
  2017年   178篇
  2016年   302篇
  2015年   313篇
  2014年   341篇
  2013年   438篇
  2012年   396篇
  2011年   360篇
  2010年   274篇
  2009年   372篇
  2008年   405篇
  2007年   487篇
  2006年   365篇
  2005年   287篇
  2004年   222篇
  2003年   260篇
  2002年   203篇
  2001年   176篇
  2000年   141篇
  1999年   151篇
  1998年   157篇
  1997年   71篇
  1996年   74篇
  1995年   71篇
  1994年   47篇
  1993年   56篇
  1992年   46篇
  1991年   41篇
  1990年   37篇
  1989年   32篇
  1988年   32篇
  1987年   23篇
  1986年   30篇
  1985年   25篇
  1984年   23篇
  1983年   7篇
  1982年   12篇
  1981年   11篇
  1980年   19篇
  1979年   18篇
  1978年   14篇
  1977年   13篇
  1976年   10篇
  1974年   8篇
排序方式: 共有7856条查询结果,搜索用时 0 毫秒
961.
962.
963.
Intermolecular interactions that involve aromatic rings are key processes in both chemical and biological recognition. It is common knowledge that the existence of anion-π interactions between anions and electron-deficient (π-acidic) aromatics indicates that electron-rich (π-basic) aromatics are expected to be repulsive to anions due to their electron-donating character. Here we report the first concrete theoretical and experimental evidence of the anion-π interaction between electron-rich alkylbenzene rings and a fluoride ion in CH(3)CN. The cyclophane cavity bridged with three naphthoimidazolium groups selectively complexes a fluoride ion by means of a combination of anion-π interactions and (C-H)(+)···F(-)-type ionic hydrogen bonds. (1)H NMR, (19)F NMR, and fluorescence spectra of 1 and 2 with fluoride ions are examined to show that only 2 can host a fluoride ion in the cavity between two alkylbenzene rings to form a sandwich complex. In addition, the cage compounds can serve as highly selective and ratiometric fluorescent sensors for a fluoride ion. With the addition of 1 equiv of F(-), a strongly increased fluorescence emission centered at 385 nm appears at the expense of the fluorescence emission of 2 centered at 474 nm. Finally, isothermal titration calorimetry (ITC) experiments were performed to obtain the binding constants of the compounds 1 and 2 with F(-) as well as Gibbs free energy. The 2-F(-) complex is more stable than the 1-F(-) complex by 1.87 kcal mol(-1), which is attributable to the stronger anion-π interaction between F(-) and triethylbenzene.  相似文献   
964.
965.
With a view on protein–nucleic acid interactions in the presence of metal ions we studied the “simple” mixed‐ligand model systems containing histamine (Ha), the metal ions Ni2+, Cu2+, or Zn2+ (M2+), and the nucleotides adenosine 5′‐triphosphate (ATP4?) or uridine 5′‐triphosphate (UTP4?), which will both be referred to as nucleoside 5′‐triphosphate (NTP4?) . The stability constants of the ternary M(NTP)(Ha)2? complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary‐complex types, M(ATP)(Ha)2? and M(UTP)(Ha)2?, that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M2+ in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50 %. Consequently, in protein–nucleic acid interactions imidazole–nucleobase stacks may well be of relevance. Furthermore, the well‐known formation of macrochelates in binary M2+ complexes of purine nucleotides, that is, the phosphate‐coordinated M2+ interacts with N7, is confirmed for the M(ATP)2? complexes. It is concluded that upon formation of the mixed‐ligand complexes the M2+? N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)2? and M(ATP)(Ha)2? complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10) %, (75±8) %, and (31±14) % for Ni(ATP)2?, Cu(ATP)2?, and Zn(ATP)2?, respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)2? species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.  相似文献   
966.
Self-assembly of proteins mediated by metal ions is crucial in biological systems and a better understanding and novel strategies for its control are important. An abiotic metal ion ligand in a protein offers the prospect of control of the oligomeric state, if a selectivity over binding to the native side chains can be achieved. Insulin binds Zn(II) to form a hexamer, which is important for its storage in vivo and in drug formulations. We have re-engineered an insulin variant to control its self-assembly by covalent attachment of 2,2'-bipyridine. The use of Fe(II) provided chemoselective binding over the native site, forming a homotrimer in a reversible manner, which was easily followed by the characteristic color of the Fe(II) complex. This provided the first well-defined insulin trimer and the first insulin variant for which self-assembly can be followed visually.  相似文献   
967.
吕功煊 《分子催化》2011,(6):574-579
生物体内细胞在氧化物质的过程中释放出的大量自由能,这些能量先形成高能磷酸化合物三磷酸腺苷(adenosine 5′-triphosphate,ATP),当ATP水解为ADP(二磷酸腺苷,adenosine 5′-diphosphate)和无机磷酸时.  相似文献   
968.
The noncovalent complexation of three glucosylcalix[4]arenes (1-3) towards 23 mono- and dicarboxylic acid anions were studied by ESI-FTICR mass spectrometry. Competitive complexation, collision-induced dissociation and gas-phase H/D-exchange experiments were performed to obtain information on selectivity of calixarenes towards carboxylates and characteristics of their complexes. The flexibility and number of glucose units of the host and the spatial disposition of the hydrogen bonding groups on the carboxylate guests were found to affect the selectivity of complexation strongly. The glucosylcalixarenes exhibited particular selectivity for dicarboxylic acid anions incorporating π-systems, and clear isomeric selectivity was observed for isophthalic among phthalic acid anions and for fumaric acid over maleic acid anion.  相似文献   
969.
The separation properties of five silica packings bonded with 1-[3-(trimethoxysilyl)propyl]urea in the range of 0–3.67 μmol m−2 were investigated in the hydrophilic interaction chromatography (HILIC) elution mode. An increase of the ligand surface density promoted retention of non-charged polar compounds and even more so for acids. An opposite trend was observed for bases, while the amphoteric compound tyrosine exhibited a U-shaped response profile. An overall partitioning retention mechanism was incompatible with these observations; rather, the substantial involvement of adsorptive interactions was implicated. Support for the latter was provided by column-specific changes in analyte retention and concomitant selectivity effects due to variations of salt concentration, type of salt, pH value, organic modifier content, and column temperature. Silica was more selective for separating compounds differing in charge state (e.g. tyramine vs. 4-hydroxybenzoic acid), while in cases where structural differences of solutes resided in non-charged polar groups (e.g. tyramine vs. 5-hydroxydopamine, nucleoside vs. nucleobase) more selective separations were obtained on bonded phases. Hierarchical cluster analysis of the home-made urea-type and three commercial amide-type bonded packings evinced considerable differences in separation properties. The present data emphasise that the role of the packing material under HILIC elution conditions is hardly just the polar support for a dynamic coating with a water-enriched layer. Three major retention mechanisms are claimed to be relevant on bare silica and the urea-type bonded packings: (i) HILIC-type partitioning, (ii) HILIC-type weak adsorption such as hydrogen bonding between solutes and ligands or solutes and silanols (potentially influenced by individual degrees of solvation, salt bridging, etc.), (iii) strong electrostatic (ionic) solute–silanol interactions (attractive/repulsive). Even when non-charged polar bonded phases are used, solute–silanol interactions should not be discounted, which makes them a prime parameter to be characterised by HILIC column tests. Multi/mixed-mode type separations seem to be common under HILIC elution conditions, associated with a great deal of selectivity increments. They are accessible and controllable by a careful choice of the type of packing, the mobile phase composition, and the temperature.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号