首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   76篇
  国内免费   12篇
化学   265篇
晶体学   10篇
物理学   100篇
  2023年   1篇
  2022年   9篇
  2021年   11篇
  2020年   18篇
  2019年   18篇
  2018年   21篇
  2017年   10篇
  2016年   18篇
  2015年   24篇
  2014年   15篇
  2013年   19篇
  2012年   19篇
  2011年   12篇
  2010年   12篇
  2009年   17篇
  2008年   19篇
  2007年   20篇
  2006年   26篇
  2005年   12篇
  2004年   12篇
  2003年   13篇
  2002年   8篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   8篇
  1997年   5篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有375条查询结果,搜索用时 15 毫秒
61.
62.
《化学:亚洲杂志》2018,13(18):2649-2663
In this work, reciprocal energy transfer between Mn2+ and Eu2+ ions in nitride SrAlSi4N7 has been found and investigated in detail. In contrast to Mn2+‐ and Eu2+‐activated oxide‐based phosphors, the red light centered at 608 nm is ascribed to 4f–5d transitions of Eu2+ ions and Mn2+‐activated SrAlSi4N7 emits a cyan light peaking at 500 nm. Additionally, the special broad excitation band of SrAlSi4N7:Mn2+ centered at 362 nm has been covered by that of Eu2+ ions ranging from 300 to 550 nm. The overlap of the energy level of Mn2+ and Eu2+ ions creates the conditions for reciprocal energy transfer between Eu2+ and Mn2+ ions. A series of SrAlSi4N7:0.002 Mn2+,xEu2+ (0≤x≤005) with tunable light emission have been synthesized and the decay curves of samples prove the reciprocal occurrence of the energy transfer between Mn2+ and Eu2+ ions. This mode of energy transfer not only prevents the loss of energy, but also improves the thermal stability, and the intensity of SrAlSi4N7:Mn2+,Eu2+ at 150 °C is still beyond 92 % of the initial intensity. The results provide a new mode of energy transfer, which is expected to reduce the drawbacks existing in energy transfer.  相似文献   
63.
Two new calcium nitridomanganates, Ca12[Mn19N23] (P3, a=11.81341(3) Å, c=5.58975(2) Å, Z=1) and Ca133[Mn216N260] ( , a=39.477(1) Å, c=5.5974(2) Å, Z=1), were obtained by a gas–solid reaction of Ca3N2 and Mn with N2 at 1273 K and 1223 K, respectively. The crystal structure of Ca12[Mn19N23] was determined from high‐resolution X‐ray synchrotron powder diffraction data, whereas single‐crystal X‐ray diffraction was employed to establish the crystal structure of the Ca133[Mn216N260] phase, which classifies as a complex metallic alloy (CMA). Both crystal structures have 2D nitridomanganate layers containing similar building blocks but of different levels of structural complexity. Bonding analysis as well as magnetic susceptibility and electron spin resonance measurements revealed that only a fraction of the Mn atoms in both structures carries a localized magnetic moment, while for most Mn species the magnetism is quenched as a result of metal–metal bond formation.  相似文献   
64.
The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn3N4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications.  相似文献   
65.
A nitrogen‐rich compound, ReN8?x N2, was synthesized by a direct reaction between rhenium and nitrogen at high pressure and high temperature in a laser‐heated diamond anvil cell. Single‐crystal X‐ray diffraction revealed that the crystal structure, which is based on the ReN8 framework, has rectangular‐shaped channels that accommodate nitrogen molecules. Thus, despite a very high synthesis pressure, exceeding 100 GPa, ReN8?x N2 is an inclusion compound. The amount of trapped nitrogen (x) depends on the synthesis conditions. The polydiazenediyl chains [?N=N?] that constitute the framework have not been previously observed in any compound. Ab initio calculations on ReN8?x N2 provide strong support for the experimental results and conclusions.  相似文献   
66.
Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill‐suited for continuous‐flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed‐bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro‐batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis.  相似文献   
67.
68.
The new barium nitridoosmate oxide (Ba6O)(OsN3)2 was prepared by reacting elemental barium and osmium (3:1) in nitrogen at 815–830 °C. The crystal structure of (Ba6O)(OsN3)2 as determined by laboratory powder X‐ray diffraction ( , No 148: a=b=8.112(1) Å, c=17.390(1) Å, V=991.0(1) Å3, Z=3), consists of sheets of trigonal OsN3 units and trigonal‐antiprismatic Ba6O groups, and is structurally related to the “313 nitrides” AE3MN3 (AE=Ca, Sr, Ba, M=V–Co, Ga). Density functional calculations, using a hybrid functional, likewise indicate the existence of oxygen in the Ba6 polyhedra. The oxidation state 4+ of osmium is confirmed, both by the calculations and by XPS measurements. The bonding properties of the OsN35? units are analyzed and compared to the Raman spectrum. The compound is paramagnetic from room temperature down to T=10 K. Between room temperature and 100 K it obeys the Curie–Weiss law (μ=1.68 μB). (Ba6O)(OsN3)2 is semiconducting with a good electronic conductivity at room temperature (8.74×10?2 Ω?1 cm?1). Below 142 K the temperature dependence of the conductivity resembles that of a variable‐range hopping mechanism.  相似文献   
69.
70.
Herein we report the synthesis of a crystalline graphitic carbon nitride, or g-C(3)N(4), obtained from the temperature-induced condensation of dicyandiamide (NH(2)C(=NH)NHCN) by using a salt melt of lithium chloride and potassium chloride as the solvent. The proposed crystal structure of this g-C(3)N(4) species is based on sheets of hexagonally arranged s-heptazine (C(6)N(7)) units that are held together by covalent bonds between C and N atoms which are stacked in a graphitic, staggered fashion, as corroborated by powder X-ray diffractometry and high-resolution transmission electron microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号