首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   76篇
  国内免费   12篇
化学   265篇
晶体学   10篇
物理学   100篇
  2023年   1篇
  2022年   9篇
  2021年   11篇
  2020年   18篇
  2019年   18篇
  2018年   21篇
  2017年   10篇
  2016年   18篇
  2015年   24篇
  2014年   15篇
  2013年   19篇
  2012年   19篇
  2011年   12篇
  2010年   12篇
  2009年   17篇
  2008年   19篇
  2007年   20篇
  2006年   26篇
  2005年   12篇
  2004年   12篇
  2003年   13篇
  2002年   8篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   8篇
  1997年   5篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有375条查询结果,搜索用时 15 毫秒
11.
Enrichment of UVI is an urgent project for nuclear energy development. Herein, magnetic graphitic carbon nitride nanosheets were successfully prepared by in situ anchoring of pyrrhotite (Fe7S8) on the graphitic carbon nitride nanosheet (CNNS), which were used for capturing UVI. The structural characterizations of Fe7S8/CNNS-1 indicated that the CNNS could prevent the aggregation of Fe7S8 and the saturation magnetization was 4.69 emu g−1, which meant that it was easy to separate the adsorbent from the solution. Adsorption experiments were performed to investigate the sorption properties. The results disclosed that the sorption data conformed to the Langmuir isotherm model with the maximum adsorption capacity of 572.78 mg g−1 at 298 K. The results of X-ray photoelectron spectroscopy (XPS) demonstrated that the main adsorption mechanism are as follows: UVI is adsorbed on the surface of Fe7S8/CNNS-1 through surface complexation initially, then it was reduced to insoluble UIV. Thereby, this work provided an efficient and easy to handle sorbent material for extraction of UVI.  相似文献   
12.
Trace rare gas optical emission spectroscopy (TRG-OES) is carried out to determine the excitation temperature, vibrational temperature, dissociation fraction and nitrogen (N) atom density in 50?Hz active screen cage nitrogen plasma, as a function of discharge parameters (current density and fill pressure) and hydrogen concentrations. The excitation temperature is determined from Ar–I emission lines and is found to increase with hydrogen mixing. In a similar fashion, the vibrational temperature of second positive system is determined and found to have increasing trend with hydrogen addition. The dissociation fraction increases with hydrogen concentration up to 40% H2 in the nitrogen plasma, so as the nitrogen atom density.  相似文献   
13.
The kinetics and mechanism of the reaction of SIV (SO32?+HSO3?) with a ruthenium(VI) nitrido complex, [(L)RuVI(N)(OH2)]+ (RuVIN, L=N,N′‐bis(salicylidene)‐o‐cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3? and SO32? by RuVIN. A deuterium isotope effect of 4.7 is observed in the HSO3? pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N?S bond formation (partial N‐atom transfer) between RuVIN and HSO3? and H+ transfer from HSO3? to a H2O molecule.  相似文献   
14.
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3N2, Mg3N2, and Ge3N4) have been studied by powder X‐ray diffraction (XRD) and 14N magic angle‐spinning (MAS) solid‐state NMR spectroscopy. For Ca3N2, Mg3N2, and Ge3N4, no 14N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and ‘high speed’ (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder‐XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their 14N MAS solid‐state NMR spectrum matches perfectly well with the number of nitrogen‐containing phases identified by powder‐XRD. The 14N MAS solid‐state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
15.
16.
Assisted by a new dissolution procedure, dicyandiamide (DCDA), an environmentally benign and cheap precursor, has been employed for the synthesis of mesoporous carbon nitride (CN) materials through a nanocasting approach. The synthesized mesoporous materials possessed high specific surface areas (269–715 m2 g?1) with narrow pore‐size distributions (about 5 nm) and faithfully replicated the mesostructures of the SBA‐15 and FDU‐12 templates. Several characterization techniques, including XRD, SAXS, TEM, Raman and FTIR spectroscopy, XPS, and CO2‐TPD, were used to analyze the physicochemical properties of these materials and the results showed that the mesoporous CND materials had graphitic‐like structures and consisted of CN heterocycles, as well as amino groups. In a series of Knoevenagel condensation reactions, as exemplified by the reaction of various aldehydes and nitriles, these mesoporous CND materials demonstrated high and stable catalytic activities, owing to an abundance of basic sites.  相似文献   
17.
Adsorption and activation of dinitrogen (N2) is an indispensable process in nitrogen fixation. Metal nitride species continue to attract attention as a promising catalyst for ammonia synthesis. However, the detailed mechanisms at a molecular level between reactive nitride species and N2 remain unclear at elevated temperature, which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system. Herein, the 14N/15N isotopic exchange in the reaction between tantalum nitride cluster anions Ta314N3- and 15N2 leading to the regeneration of 14N2/14N15N was observed at elevated temperature (393-593 K) using mass spectrometry. With the aid of theoretical calculations, the exchange mechanism and the effect of temperature to promote the dissociation of N2 on Ta3N3? were elucidated. A comparison experiment for Ta314N4-/15N2 couple indicated that only desorption of 15N2 from Ta314N415N2- took place at elevated temperature. The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species. This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.  相似文献   
18.
Droop, the decrease of efficiency with increased power density, became a major topic with InGaN LEDs, after its introduction in 2007. This paper provides insight into droop in localized center luminescence phosphors, exemplified here by Eu2+ doped materials. This topic is of increasing importance, as high brightness blue LEDs have reached outputs >1 W/mm2. The nonlinearities in phosphor quantum efficiency result in drive‐dependent color point shift and reduction of overall efficiency of phosphor converted white LEDs which utilize Eu2+ activated phosphors. The efficiency quenching can be traced back to two processes, well‐known in laser physics, excited state absorption or/and cross relaxation by Foerster/Dexter transfer. Both processes lead to reduction in phosphor efficiency, but they can be differentiated. Understanding the root cause of efficiency quenching opens ways to minimize the practical consequences. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
19.
Tetrahedra-based nitrides with network structures have emerged as versatile materials with a broad spectrum of properties and applications. Both nitridosilicates and nitridophosphates are well-known examples of such nitrides that upon doping with Eu2+ exhibit intriguing luminescence properties, which makes them attractive for applications. Nitridosilicates and nitridophosphates show manifold structural variability; however, no mixed nitridosilicatephosphates except SiPN3 and SiP2N4NH have been described so far. The compounds AESiP3N7 (AE=Sr, Ba) were synthesized by a high-pressure high-temperature approach using the multianvil technique (8 GPa, 1400–1700 °C) starting from the respective alkaline earth azides and the binary nitrides P3N5 and Si3N4. The latter were activated by NH4F, probably acting as a mineralizing agent. SrSiP3N7 and BaSiP3N7 were obtained as single crystals. They crystallized in the barylite-1O (M=Sr) and barylite-2O structure types (M=Ba), respectively, with P and Si being occupationally disordered. Cation disorder was further supported by solid-state NMR spectroscopy and energy-dispersive X-ray spectroscopy (EDX) mapping of BaSiP3N7 with atomic resolution. Upon doping with Eu2+, both compounds showed blue emission under UV excitation.  相似文献   
20.
Phosphorus nitride imide, PN(NH), is of great scientific importance because it is isosteric with silica (SiO2). Accordingly, a varied structural diversity could be expected. However, only one polymorph of PN(NH) has been reported thus far. Herein, we report on the synthesis and structural investigation of the first high‐pressure polymorph of phosphorus nitride imide, β‐PN(NH); the compound has been synthesized using the multianvil technique. By adding catalytic amounts of NH4Cl as a mineralizer, it became possible to grow single crystals of β‐PN(NH), which allowed the first complete structural elucidation of a highly condensed phosphorus nitride from single‐crystal X‐ray diffraction data. The structure was confirmed by FTIR and 31P and 1H solid‐state NMR spectroscopy. We are confident that high‐pressure/high‐temperature reactions could lead to new polymorphs of PN(NH) containing five‐fold‐ or even six‐fold‐coordinated phosphorus atoms and thus rivalling or even surpassing the structural variety of SiO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号