首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4432篇
  免费   574篇
  国内免费   914篇
化学   5112篇
晶体学   71篇
力学   229篇
综合类   42篇
数学   64篇
物理学   402篇
  2024年   12篇
  2023年   48篇
  2022年   165篇
  2021年   181篇
  2020年   260篇
  2019年   168篇
  2018年   158篇
  2017年   174篇
  2016年   252篇
  2015年   239篇
  2014年   273篇
  2013年   423篇
  2012年   308篇
  2011年   276篇
  2010年   202篇
  2009年   255篇
  2008年   265篇
  2007年   277篇
  2006年   291篇
  2005年   227篇
  2004年   227篇
  2003年   220篇
  2002年   160篇
  2001年   108篇
  2000年   111篇
  1999年   102篇
  1998年   70篇
  1997年   93篇
  1996年   66篇
  1995年   64篇
  1994年   49篇
  1993年   47篇
  1992年   40篇
  1991年   23篇
  1990年   15篇
  1989年   10篇
  1988年   14篇
  1987年   7篇
  1986年   10篇
  1985年   10篇
  1984年   6篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1957年   1篇
排序方式: 共有5920条查询结果,搜索用时 0 毫秒
91.
Herein, smart coatings based on photo-responsive polymer nanocapsules (NC) and deposited by laser evaporation are presented. These systems combine remotely controllable release and high encapsulation efficiency of nanoparticles with the easy handling and safety of macroscopic substrates. In particular, azobenzene-based NC loaded with active molecules (thyme oil and coumarin 6) were deposited through Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on flat inorganic (KBr) and organic (polyethylene, PE) and 3D (acrylate-based micro-needle array) substrates. SEM analyses highlighted the versatility and performance of MAPLE in the fabrication of the designed smart coatings. DLS analyses, performed on both MAPLE- and drop casting-deposited NC, demonstrated the remarkable adhesion achieved with MAPLE. Finally, thyme oil and coumarin 6 release experiments further demonstrated that MAPLE is a promising technique for the realization of photo-responsive coatings on various substrates.  相似文献   
92.
The present study aimed to develop n-propyl gallate (PG)-encapsulated liposomes through a novel direct pouring method using the quality-by-design (QbD) approach. A further aim was to coat liposomes with hyaluronic acid (HA) to improve the stability of the formulation in nasal mucosa. The QbD method was used for the determination of critical quality attributes in the formulation of PG-loaded liposomes coated with HA. The optimized formulation was determined by applying the Box–Behnken design to investigate the effect of composition and process variables on particle size, polydispersity index (PDI), and zeta potential. Physiochemical characterization, in vitro release, and permeability tests, as well as accelerated stability studies, were performed with the optimized liposomal formulation. The optimized formulation resulted in 90 ± 3.6% encapsulation efficiency, 167.9 ± 3.5 nm average hydrodynamic diameter, 0.129 ± 0.002 PDI, and −33.9 ± 4.5 zeta potential. Coated liposomes showed significantly improved properties in 24 h in an in vitro release test (>60%), in vitro permeability measurement (420 μg/cm2) within 60 min, and also in accelerated stability studies compared to uncoated liposomes. A hydrogen-peroxide-scavenging assay showed improved stability of PG-containing liposomes. It can be concluded that the optimization of PG-encapsulated liposomes coated with HA has great potential for targeting several brain diseases.  相似文献   
93.
Silk has been widely used in the clothing industry due to their soft and smooth features, good biocompatibility, good heat dissipation, warmth and ultraviolet resistance. The application of fragrance to silk can significantly improve the performance of silk. However, there are two key scientific problems that need to be solved: slowing down the release rate of fragrances and increasing the scent lasting time of silk. In this study, cationic and temperature-sensitive liposomes were designed and prepared to encapsulate eugenol. These fragrance-loaded liposomes significantly slowed down the release rate of the fragrance and controlled the release rate of the fragrance in a thermo-sensitive manner. The liposomes adhered to the silk through electrostatic adsorption interaction. The positive charge on the fragrance-loaded liposomes neutralized much negative charge on silk and thereby increasing the adhesion efficiency.  相似文献   
94.
A versatile nickel catalyst allowed for C H alkylations of unactivated arenes with challenging secondary alkyl bromides and chlorides. The high catalytic efficacy also set the stage for direct secondary alkylations of indoles as well as C H trifluoroethylations with ample substrate scope.  相似文献   
95.
Radiation-induced cleavage for controlled release in vivo is yet to be established. We demonstrate the use of 3,5-dihydroxybenzyl carbamate (DHBC) as a masking group that is selectively and efficiently removed by external radiation in vitro and in vivo. DHBC reacts mainly with hydroxyl radicals produced by radiation to afford hydroxylation at para/ortho positions, followed by 1,4- or 1,6-elimination to rescue the functionality of the client molecule. The reaction is rapid and can liberate functional molecules under physiological conditions. This controlled-release platform is compatible with living systems, as demonstrated by the release of a rhodol fluorophore derivative in cells and tumor xenografts. The combined benefits of the robust caging group, the good release yield, and the independence of penetration depth make DHBC derivatives attractive chemical caging moieties for use in chemical biology and prodrug activation.  相似文献   
96.
Density functional theory (DFT) calculations were performed to gain insight into the mechanism of the nickel-catalyzed hydrocyanation of terminal alkynes with Zn(CN)2 and water to exclusively generate the branched nitrile with excellent Markovnikov selectivity. After precatalyst activation to give the LNi(0) active species, the transformation proceeds via the following steps: (1) oxidative addition of H2O to the LNi(0) provides the intermediate LNi(II)H(OH); (2) ligand exchange of LNi(II)H(OH) with Zn(CN)2 gives the intermediate LNi(II)H(CN); (3) alkyne insertion to the LNi(II)H(CN) forms the alkenyl nickel complex, followed by the reductive elimination step reaching the final product. This mechanism is kinetically and thermodynamically more favorable than that of the experimental proposed ones. On the basis of the experimental observations, more water molecules cannot further improve the reaction as it has also been rationalized. Furthermore, the origin of the high regioselectivity of the product, the variable effectiveness of the metal mediator as function of ligands, as well as the high yield of the alkyl-substituted alkynes substrates, is analyzed in detail. © 2019 Wiley Periodicals, Inc.  相似文献   
97.
Water-dispersable products have been prepared from the reaction of magnesium acetate tetrahydrate with hydrogen peroxide at mole ratios of 1 : 2 to 1 : 40 to produce compositions with active oxygen or peroxide contents of 1–30%. The products are believed to be stoichiometric mixtures of HOO Mg OAc and HOO Mg OOH that vary in composition with the molar ratios used. These new compounds are hydrolytically stable at ambient temperatures for extended periods (at least 60 days) and thermally stable below 300°C. Pad-cure processes are described for applying the above reaction products as a dispersion in water or aqueous hydrogen peroxide or as a foam in aqueous hydrogen peroxide to impart antibacterial activity to celulosics, synthetic fibers and fiber blends. The textiles are treated with dispersions or foam containing 10–17% of the reaction products derived from mole ratios of 1 : 2 to 1 : 40 magnesium acetate tetrahydrate: hydrogen peroxide. On subsequent heating for 2–4 min at 120–150°C, washing and drying, the modified textiles contain durably bound active oxygen or peroxide (0.1–1.7%) that has activity against representative gram-positive and gramnegative bacteria for up to 50 launderings.  相似文献   
98.
99.
The sunscreen nanocapsules were successfully synthesized by the way of layer-by-layer self-assembly using charged droplets (prepared by emulsification of LAD-30, Tween-80 and EHA (2-Ethylhexyl-4-dimethylaminobenzoate)) as templates. Chitosan/sodium alginate/calcium chloride were selected as wall materials to wrap EHA. The emulsions with the ratio of Tween-80 to EHA (1:1) were stable. A stable NEI negative emulsion can be obtained when the ratio of Tween-80 and LAD-30 was 9:1. Chitosan solutions (50 kDa, 0.25 mg/mL) and sodium alginate solutions (0.5 mg/mL) were selected to prepare nanocapsules. The nanocapsules were characterized via some physico-chemical methods. Based on the synergistic effects of the electrostatic interaction between wall materials and emulsifiers, EHA was effectively encapsulated. DLS and TEM showed that the sunscreen nanocapsules were dispersed in a spherical shape with nano-size, with the increasing number of assembly layers, the size increased from 155 nm (NEI) to 189 nm (NEII) to 201 nm (NEIII) and 205 nm after solidification. The release studies in vitro showed sustained release behavior of the nanocapsules were observed with the increase of the number of deposition layers, implying a good coating effect. The sunscreen nanocapsules could control less than 50% the release of EHA after crosslinking of calcium chloride and sodium alginate, which also could effectively avoid the stimulation of the sun protection agent on the skin.  相似文献   
100.
An ultrasound standing wave field (SWF) has been utilized in many biomedical applications. Here, we demonstrate how a SWF can enhance drug release using acoustic droplet vaporization (ADV) in an acoustically-responsive scaffold (ARS). ARSs are composite fibrin hydrogels containing payload-carrying, monodispersed perfluorocarbon (PFC) emulsions and have been used to stimulate regenerative processes such as angiogenesis. Elevated amplitudes in the SWF significantly enhanced payload release from ARSs containing dextran-loaded emulsions (nominal diameter: 6 μm) compared to the -SWF condition, both at sub- and suprathreshold excitation pressures. At 2.5 MHz and 4 MPa peak rarefactional pressure, the cumulative percentage of payload released from ARSs reached 84.1 ± 5.4% and 66.1 ± 4.4% under + SWF and -SWF conditions, respectively, on day 10. A strategy for generating a SWF for an in situ ARS is also presented. For dual-payload release studies, bi-layer ARSs containing a different payload within each layer were exposed to temporally staggered ADV at 3.25 MHz (day 0) and 8.6 MHz (day 4). Sequential payload release was demonstrated using dextran payloads as well as two growth factors relevant to angiogenesis: basic fibroblast growth factor (bFGF) and platelet-derived growth factor BB (PDGF-BB). In addition, bubble growth and fibrin degradation were characterized in the ARSs under +SWF and -SWF conditions. These results highlight the utility of a SWF for modulating single and dual payload release from an ARS and can be used in future therapeutic studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号