首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   27篇
  国内免费   47篇
化学   714篇
力学   4篇
综合类   3篇
数学   2篇
物理学   23篇
  2023年   1篇
  2022年   17篇
  2021年   11篇
  2020年   20篇
  2019年   10篇
  2018年   13篇
  2017年   8篇
  2016年   22篇
  2015年   14篇
  2014年   16篇
  2013年   39篇
  2012年   16篇
  2011年   19篇
  2010年   25篇
  2009年   36篇
  2008年   43篇
  2007年   38篇
  2006年   45篇
  2005年   35篇
  2004年   49篇
  2003年   50篇
  2002年   27篇
  2001年   22篇
  2000年   22篇
  1999年   24篇
  1998年   17篇
  1997年   19篇
  1996年   13篇
  1995年   15篇
  1994年   13篇
  1993年   12篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有746条查询结果,搜索用时 93 毫秒
41.
In this investigation the production of secondary value-added products, such as alkyd resins, derived from the glycolysis of poly(ethylene terephthalate) (PET) is examined as an effective way for its recycling. PET was taken from common soft-drink bottles and diethylene glycol (DEG) was used for the depolymerization at several initial molar ratios. The oligomers obtained were analyzed according to their average molecular weights. Furthermore, the glycolyzed PET products (oligomers) were reacted with maleic anhydride, phthalic anhydride and propylene glycol to form unsaturated polyester resins. These were subsequently mixed with styrene and cured using the benzoyl peroxide/amine initiator system to carry out the reaction in ambient temperature. The curing characteristics of the resins produced were investigated with respect to the initial molar ratio of DEG/PET as well as the initial initiator concentration. Finally, the mechanical properties (tensile strength and elongation at the break point) of the resins were compared with the conventional general purpose resin and were found to be comparable.  相似文献   
42.
The effects of the hyperbranched polyester with hydroxyl end groups (HBPE‐OH) on the curing behavior and toughening performance of a commercial epoxy resin (diglycidyl ether of bisphenol A, DGEBA) were presented. The addition of HBPE‐OH into DGEBA strongly increased its curing rate and conversion of epoxide group due to the catalytic effect of hydroxyl groups in HBPE‐OH and the low viscosity of the blend at curing temperature. The improvements on impact strength and critical stress intensity factor (or fracture toughness, K1c) were observed with adding HBPE‐OH. The impact strength was 8.04 kJ m?1 when HBPE‐OH reached 15 wt% and the K1c value was approximately two times the value of pure epoxy resin when HBPE‐OH content was 20 wt%. The morphology of the blends was also investigated, which indicated that HBPE‐OH particles, as a second phase in the epoxy matrix, combined with each other as the concentration of HBPE‐OH increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
43.
TG-DTA analysis method was used to study the curing behaviour of urea-formaldehyde (UF) adhesive resins in the presence of a wood substrate. The cure process was followed using a Setaram labsysTM instrument in flowing nitrogen atmosphere by varying the ratio of resin and wood. Resin cure was catalysed with 2% of NH4Cl. Curing tests were performed in the open standard platinum crucibles and in the sealed glass capsules. To characterise the reactivity of curing system, the peak temperatures in DTA curve and the mass loss values in TG curve were taken as the apparent indices. The main attention was paid to phenomena which actually take place in curing of UF resins during manufacturing of particleboards. Reactivity of the curing system depends mostly on methylol content of resin and can be adequetly evaluated by the maximum temperature of exothermic peak. The wood substrate has a substantial influence on the resin and water diffusion in system causing the changes in water/resin separation and water evaporation conditions. The water movement in curing adhesive joint was a confusing parameter in determining the peak positions. The rate of mass loss on a wood substrate is higher as compared to curing UF resin alone.  相似文献   
44.
The sustainable resveratrol‐based phthalonitrile was used in the preparation of E‐glass fiber‐reinforced phthalonitrile composite panels fabricated by hot pressed prepreg consolidation with bis[4‐(3‐aminophenoxy)phenyl]sulfone (m‐BAPS) as the curing additive. This amorphous monomer exhibited excellent viscosities at temperatures below 200 °C, which is applicable to standard processing conditions. Rheometric measurements were used to evaluate the cure of the composite as a function of the postcure conditions. The composite retains >95% of its room temperature storage modulus up to 450 °C based on these postcuring parameters. More importantly, flammability performance of the composite—which was determined in terms of ignitability, heat release, and mass loss rate—excels over other state‐of‐the‐art polymer/glass composites. Even under the most extreme heat fluxes (e.g., 100 kW⋅m−2), the composite performs exceptionally well suggesting that resveratrol‐based phthalonitrile composites can be used in fire‐resistant applications. Published 2018. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1128–1132  相似文献   
45.
In this preliminary report we present the mesomorphic properties and electro-optic investigations of three new 'banana-shaped' mesogens. The materials are structurally similar to Niori's the original bent-core materials but possess alkylthio substituents in place of alkoxy substituents. Microscopic investigations revealed an unusual 'spiral-domain texture', similar to that observed in the 'B7' phase of related materials. Further investigations support our earlier observations that the materials display antiferroelectric switching in this phase, in two of the new materials studied. The nature of this phase, in comparison with the 'switchable' (B2) and 'chiral-domain' (B4) phases of the original materials, is discussed.  相似文献   
46.
In this article, new compounds based on the carbazole scaffold (DMs = DM1 and DM2, constituted by a carbazole unit connected on positions 3 and 6 to a two 4,4′‐dimethoxydiphenylamine groups and differing by the substituent present on the nitrogen heteroatom of the carbazole core) were synthesized and proposed as high‐performance visible light photoinitiators/photosensitizers for both the free‐radical polymerization of methacrylates and the cationic polymerization of epoxides upon visible light exposure using LED@405 nm. Remarkably, DM2 leads to higher final conversions than DM1. In order to study the photophysical and photochemical properties of the carbazole derivatives, different parameters were taken into account such as the light absorption, the steady‐state photolysis, and the fluorescence spectroscopy. Using different techniques such as fluorescence quenching, redox behavior, and cyclic voltammetry, we are able to discuss the photosensitization/photoinitiation reactions providing a full coherent picture of the involved chemical mechanisms. The photosensitization of the carbazole derivatives occurred predominantly via singlet excited states at the rate of the diffusion limit. Upon exposure to laser diode at 405 nm, DMs show high performance in initiating systems for 3D resins. Remarkably, DM2 can also be used in photocomposite synthesis using light‐emitting diode conveyor. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2081–2092  相似文献   
47.
Isothermal ultra‐cooling crystallization tests were conducted on three blown film grade bimodal HDPE resins using an ultrafast scanning calorimeter, the Flash DSC. Isothermal tests were performed to study the regime transition, the thermal nucleation and the spherulitical growth using the Hoffman‐Lauritzen theory in a range between 90 °C and 116 °C. Temperature profile estimations using such data were in good agreement with actual blown film process data. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2425–2431  相似文献   
48.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
49.
Polymeric networks are produced by step‐growth polyaddition and co‐polyaddition reactions of 1‐ethylimidazoline in combination with various diisocyanates. Five aromatic, two aliphatic diisocyanates and a polyurethane prepolymer are used as particular reactant in N,N‐dimethylformamide as solvent at room temperature. Obviously, 1‐ethylimidazoline can serve as trifunctional monomer, which enables a crosslinking reaction with diisocyanates. Molecular structure elements of the polymeric networks were studied by solid state 13C‐NMR spectroscopy revealing that detailed molecular structure formations are determined whether aromatic or aliphatic diisocyanates are used. Quantum chemical calculations were used as supporting method to elucidate the complex reaction cascades. Hence, it can be shown that beside 3:1 stoichiometric structures 2:1 based structures are formed as well. These structures are observed as kinetically controlled products only when aromatic diisocyanate monomers are used. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 977–985  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号