首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33356篇
  免费   4475篇
  国内免费   2537篇
化学   8531篇
晶体学   218篇
力学   4947篇
综合类   550篇
数学   10706篇
物理学   15416篇
  2024年   59篇
  2023年   305篇
  2022年   942篇
  2021年   925篇
  2020年   1039篇
  2019年   938篇
  2018年   896篇
  2017年   1253篇
  2016年   1454篇
  2015年   1110篇
  2014年   1787篇
  2013年   2759篇
  2012年   1953篇
  2011年   2175篇
  2010年   1874篇
  2009年   2210篇
  2008年   2049篇
  2007年   2081篇
  2006年   1779篇
  2005年   1525篇
  2004年   1425篇
  2003年   1196篇
  2002年   1144篇
  2001年   928篇
  2000年   875篇
  1999年   755篇
  1998年   698篇
  1997年   531篇
  1996年   438篇
  1995年   432篇
  1994年   387篇
  1993年   324篇
  1992年   285篇
  1991年   214篇
  1990年   194篇
  1989年   148篇
  1988年   200篇
  1987年   160篇
  1986年   123篇
  1985年   145篇
  1984年   149篇
  1983年   78篇
  1982年   106篇
  1981年   76篇
  1980年   40篇
  1979年   44篇
  1978年   37篇
  1977年   30篇
  1976年   15篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
Carbohydrates are used in nature as molecular recognition tools. Understanding their conformational behavior upon aggregation helps in rationalizing the way in which cells and bacteria use sugars to communicate. Here, the simplest α-hydroxy carbonyl compound, glycolaldehyde, was used as a model system. It was shown to form compact polar C2-symmetric dimers with intermolecular O–H⋅⋅⋅O=C bonds, while sacrificing the corresponding intramolecular hydrogen bonds. Supersonic jet infrared (IR) and Raman spectra combined with high-level quantum chemical calculations provide a consistent picture for the preference over more typical hydrogen bond insertion and addition patterns. Experimental evidence for at least one metastable dimer is presented. A rotational spectroscopy investigation of these dimers is encouraged, also in view of astrophysical searches. The binding motif competition of aldehydic sugars might play a role in chirality recognition phenomena of more complex derivatives in the gas phase.  相似文献   
952.
In the study of the Sparre Andersen risk model with phase‐type (n) inter‐claim times (PH (n) risk model), the distinct roots of the Lundberg fundamental equation in the right half of the complex plane and the linear independence of the eigenvectors related to the Lundberg matrix Lδ(s) play important roles. In this paper, we study the case where the Lundberg fundamental equation has multiple roots or the corresponding eigenvectors are linearly dependent in the PH (n) risk model. We show that the multiple roots of the Lundberg fundamental equation det[Lδ(s)] = 0 can be approximated by the distinct roots of the generalized Lundberg equation introduced in this paper and that the linearly dependent eigenvectors can be approximated by the corresponding linearly independent ones as well. Using this result we derive the expressions for the Gerber–Shiu penalty function. Two special cases of the generalized Erlang(n) risk model and a Coxian(3) risk model are discussed in detail, which illustrate the applicability of main results. Finally, we consider the PH(2) risk model and conclude that the roots of the Lundberg fundamental equation in the right half of the complex plane are distinct and that the corresponding eigenvectors are linearly independent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
953.
This paper addresses the epidemiological modeling of computer viruses. By incorporating the effect of removable storage media, considering the possibility of connecting infected computers to the Internet, and removing the conservative restriction on the total number of computers connected to the Internet, a new epidemic model is proposed. Unlike most previous models, the proposed model has no virus-free equilibrium and has a unique endemic equilibrium. With the aid of the theory of asymptotically autonomous systems as well as the generalized Poincare–Bendixson theorem, the endemic equilibrium is shown to be globally asymptotically stable. By analyzing the influence of different system parameters on the steady number of infected computers, a collection of policies is recommended to prohibit the virus prevalence.  相似文献   
954.
In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent literature.  相似文献   
955.
High‐Reynolds‐number channel flows regularly encounter topographies composed of multiple length scales and that protrude into the boundary layer. Physically, the presence of immersed obstacles leads to increased velocity gradients, turbulence production, and manifestation of wakes. Considerable challenges are associated with numerically describing the presence of obstacles in channel flows. Common approaches include generation of a computational mesh that is uniquely designed for the flow and obstacle, the immersed boundary method, and terrain‐following coordinates. There are challenges and limitations associated with each of these techniques. Specification of boundary conditions representing the perimeter of solid obstacles is a primary challenge of the immersed boundary method. In this document, a simplistic canopy stress‐like wall model is used to impose boundary conditions. The model isolates aerodynamically relevant local frontal areas through evaluation of the gradient of the topographic height field. The gradient of the height field describes both the surface‐normal direction and the frontal area, making it ideal for detecting areas on which the flow impinges. The model is tested in numerical simulations of turbulent half‐channel flow over topographies with different obstacles affixed–right prisms, rectangular prisms, ellipsoidal mounds, and sinusoids. In all cases, the performance is strong relative to datasets presented in the literature. Results are finally presented for numerical simulation of flow over complex synthetic fractal‐like topography and a synthetic city. These results show interesting trends in how the turbulent multiscale flow field responds to multiscale topography. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
956.
This article presents a discussion about the formalism, which might be associated to a general Quantum quantitative structure–properties relations operator, appearing in a Boltzmann‐like exponential form, which is based in turn on the definition of the concept of thermal voltage, applied to thermally scaled electronic density functions. Three practical numerical examples are presented, corresponding to the calculation of the polarization angle in assorted chiral molecules, the estimation of fish toxicity for perchlorobenzene within the set of chlorobenzenes and a typical quantum QSAR study on the popular Cramer steroid set.  相似文献   
957.
This work honors the 75th birthday of Professor Ionel Michael Navon by presenting original results highlighting the computational efficiency of the adjoint sensitivity analysis methodology for function‐valued operator responses by means of an illustrative paradigm dissolver model. The dissolver model analyzed in this work has been selected because of its applicability to material separations and its potential role in diversion activities associated with proliferation and international safeguards. This dissolver model comprises eight active compartments in which the 16 time‐dependent nonlinear differential equations modeling the physical and chemical processes comprise 619 scalar and time‐dependent model parameters, related to the model's equation of state and inflow conditions. The most important response for the dissolver model is the time‐dependent nitric acid in the compartment furthest away from the inlet, where measurements are available at 307 time instances over the transient's duration of 10.5 h. The sensitivities to all model parameters of the acid concentrations at each of these instances in time are computed efficiently by applying the adjoint sensitivity analysis methodology for operator‐valued responses. The uncertainties in the model parameters are propagated using the above‐mentioned sensitivities to compute the uncertainties in the computed responses. A predictive modeling formalism is subsequently used to combine the computational results with the experimental information measured in the compartment furthest from the inlet and then predict optimal values and uncertainties throughout the dissolver. This predictive modeling methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution for the a priori known mean values and uncertainties characterizing the model parameters and the computed and experimentally measured model responses. This approximate a priori distribution is subsequently combined using Bayes' theorem with the “likelihood” provided by the multi‐physics computational models. Finally, the posterior distribution is evaluated using the saddle‐point method to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi‐physics models, along with corresponding reduced uncertainties. This work shows that even though the experimental data pertains solely to the compartment furthest from the inlet (where the data were measured), the predictive modeling procedure used herein actually improves the predictions and reduces the predicted uncertainties for the entire dissolver, including the compartment furthest from the measurements, because this predictive modeling methodology combines and transmits information simultaneously over the entire phase‐space, comprising all time steps and spatial locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
958.
959.
960.
Predicting the fragmentation patterns of proteins would be beneficial for the reliable identification of intact proteins by mass spectrometry. However, the ability to accurately make such predictions remains elusive. An approach to predict the specific cleavage sites in whole proteins resulting from collision-induced dissociation by use of an improved electrostatic model for calculating the proton configurations of highly-charged protein ions is reported. Using ubiquitin, cytochrome c, lysozyme and β-lactoglobulin as prototypical proteins, this approach can be used to predict the fragmentation patterns of intact proteins. For sufficiently highly charged proteins, specific cleavages occur near the first low-basicity amino acid residues that are protonated with increasing charge state. Hybrid QM/QM′ (QM=quantum mechanics) and molecular dynamics (MD) simulations and energy-resolved collision-induced dissociation measurements indicated that the barrier to the specific dissociation of the protonated amide backbone bond is significantly lower than competitive charge remote fragmentation. Unlike highly charged peptides, the protons at low-basicity sites in highly charged protein ions can be confined to a limited sequence of low-basicity amino acid residues by electrostatic repulsion, which results in highly specific fragmentation near the site of protonation. This research suggests that the optimal charge states to form specific sequence ions of intact proteins in higher abundances than the use of less specific ion dissociation methods can be predicted a priori.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号