首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   21篇
  国内免费   80篇
化学   164篇
晶体学   12篇
物理学   21篇
  2024年   3篇
  2023年   6篇
  2022年   20篇
  2021年   20篇
  2020年   30篇
  2019年   15篇
  2018年   10篇
  2017年   15篇
  2016年   14篇
  2015年   11篇
  2014年   8篇
  2013年   17篇
  2012年   10篇
  2011年   9篇
  2010年   3篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
排序方式: 共有197条查询结果,搜索用时 46 毫秒
21.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
22.
The electrocatalytic nitrate reduction reaction (NO3RR) enables the reduction of nitrate to ammonium ions under ambient conditions. It was considered as an alternative reaction for the production of ammonia (NH3) in recent years. In this paper, we report that the Fe doping CoS2 nanoarrays can effectively catalyze the formation of NH3 from nitrate (NO3) under ambient conditions. This is mainly due to the increase of the NO3 reaction active site by Fe doping and the porous nanostructure of the catalyst, which greatly improves the catalytic activity. Specifically, at −0.9 V vs. RHE, the NH3 yield rate (RNH3) of Fe−CoS2/CC is 17.8×10−2 mmol h−1 cm−2 with Faraday Efficiency (FE) of 88.93 %. Besides, such catalyst shows good durability and catalytic stability, which provides the possibility for the future application of electrocatalytic NH3 production.  相似文献   
23.
Graphitic carbon nitride (g-C3N4) photocatalysts were synthesized via a one-step pyrolysis process using melamine, dicyandiamide, thiourea, and urea as precursors. The obtained g-C3N4 materials exhibited a significantly different performance for the photocatalytic reduction of Cr(VI) under white light irradiation, which is attributed to the altered structure and occupancies surface groups. The urea-derived g-C3N4 with nanosheet morphology, large specific surface area, and high occupancies of surface amine groups exhibited superior photocatalytic activity. The nanosheet morphology and large surface area facilitated the separation and transmission of charge, while the high occupancies of surface amine groups promoted the formation of hydrogen adsorption atomic centers which were beneficial to Cr(VI) reduction. Moreover, the possible reduction pathway of Cr(VI) to Cr(III) over the urea-derived g-C3N4 was proposed and the reduction process was mainly initiated by a direct reduction of photogenerated electrons.  相似文献   
24.
In this paper, we will discuss the excellent broadband microwave absorption behaviors of Cu/CuO/carbon nanosheet composites: traces of copper and oxide embedded in a carbon nano-sheet not only cut down the high permittivity of adsorbs but also induce more interfacial polarization centers. The results showed that at a cracking temperature of 900 °C, the fabricated material has a unique ripple-like structure, which promotes the hierarchical interfacial polarization. The prepared material has a maximum absorption bandwidth of 4.48 GHz at an exceedingly thin thickness of 1.7 mm and a maximum reflection loss of −25.3 dB at a thickness of 2 mm. It is a relatively ideal material for electromagnetic wave absorption.  相似文献   
25.
Bismuth oxybromide (BiOBr) nanosheets are exciting photocatalysts for microbial disinfection and organic dye degradation. However, it remains a great challenge to easily recycle these nanomaterials and improve their photocatalytic ability. Herein, we constructed a novel photocatalytic BiOBr@PAG gel containing BiOBr nanosheets and polyacrylamide gel (PAG), based on peroxydisulfate-induced polymerization reaction. The photocatalytic gel had equally distribution of BiOBr nanosheets on the surface, and could be easily recycled from water. More strikingly, the gel could also rapidly kill all tested pathogenic bacteria (i. e., Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) under irradiation. Its disinfection activity is attributed to remarkable intracellular ROS production and oxidative cell damage. Furthermore, the gel had higher photocatalytic activity than BiOBr nanosheets alone during degradation of organic dyes. This study developed a novel strategy for preparation of easy-recycling and high-efficiency photocatalytic systems for practical application in environmental treatment and medicinal disinfection.  相似文献   
26.
采用恒电位方法,选择氯化钾和乙二胺(EDA)为添加剂,在氧化铟锡(ITO)导电玻璃上制备了高度有序的ZnO纳米片阵列,通过二次电沉积得到了ZnO纳米片上生长纳米棒的微纳分级结构.利用化学浴沉积法在ZnO基底上沉积Sb2S3纳米粒子制备出了Sb2S3/ZnO纳米片壳核结构和Sb2S3/ZnO微纳分级壳核结构.利用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见(UV-Vis)吸收光谱、瞬态光电流等对其形貌、结构组成和光电化学性能进行了表征和分析.结果表明, Sb2S3/ZnO纳米片上生长纳米棒分级壳核结构的光电流明显高于Sb2S3/ZnO纳米片壳核结构.在Sb2S3/ZnO纳米片壳核结构和Sb2S3/ZnO微纳分级壳核结构的基础上旋涂一层P3HT薄膜形成P3HT/Sb2S3/ZnO复合结构,以上述复合结构薄膜为光活性层组装成杂化太阳电池,其中, P3HT/Sb2S3/ZnO分级壳核结构杂化太阳电池的能量转换效率最高,达到了0.81%.  相似文献   
27.
罗佳  向钢  余天  兰木  张析 《中国物理 B》2016,25(9):97305-097305
By using first-principles calculations within the framework of density functional theory,the electronic and magnetic properties of 3d transitional metal(TM) atoms(from Sc to Zn) adsorbed monolayer Ga As nanosheets(Ga As NSs) are systematically investigated.Upon TM atom adsorption,Ga As NS,which is a nonmagnetic semiconductor,can be tuned into a magnetic semiconductor(Sc,V,and Fe adsorption),a half-metal(Mn adsorption),or a metal(Co and Cu adsorption).Our calculations show that the strong p–d hybridization between the 3d orbit of TM atoms and the 4p orbit of neighboring As atoms is responsible for the formation of chemical bonds and the origin of magnetism in the Ga As NSs with Sc,V,and Fe adsorption.However,the Mn 3d orbit with more unpaired electrons hybridizes not only with the As 4p orbit but also with the Ga 4p orbit,resulting in a stronger exchange interaction.Our results may be useful for electronic and magnetic applications of Ga As NS-based materials.  相似文献   
28.
通过一步法将纳米Pd负载于二维氮化碳纳米片(g-C3N4)上,制得一种新型的二维纳米催化剂Pd/g-C_3N_4NSs(1),其结构和形貌经TEM,XRD和XPS表征。以卤代苯与取代苯硼酸的Suzuki-Miyaura反应为探针反应,研究了1的催化性能。结果表明:1催化活性较好,TOF为53 000 h-1,部分产物收率高于99%,循环使用3次,其催化性能基本不变。  相似文献   
29.
采用一种新颖的物理方法——磁力研磨法制备石墨片纳米材料,该方法能够高效的将初始鳞片石墨剥离破碎至纳米级别。研究发现,制备得到的纳米石墨片(Graphite nanosheet)具有一定的含氧官能团,并且随研磨时间增加,其比表面积可增加至804m~2·g~(-1)。电化学性能测试结果表明,在0.1 A·g~(-1)的电流密度下,最大比电容量可达到266.8 F·g~(-1),体现出了良好的电化学性能。  相似文献   
30.
Li Zhang 《中国物理 B》2022,31(9):98507-098507
A gated Hall-bar device is made from an epitaxially grown, free-standing InSb nanosheet on a hexagonal boron nitride (hBN) dielectric/graphite gate structure and the electron transport properties in the InSb nanosheet are studied by gate-transfer characteristic and magnetotransport measurements at low temperatures. The measurements show that the carriers in the InSb nanosheet are of electrons and the carrier density in the nanosheet can be highly efficiently tuned by the graphite gate. The mobility of the electrons in the InSb nanosheet is extracted from low-field magneotransport measurements and a value of the mobility exceeding $\sim 1.8\times10^4$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$ is found. High-field magentotransport measurements show well-defined Shubnikov-de Haas (SdH) oscillations in the longitudinal resistance of the InSb nanosheet. Temperature-dependent measurements of the SdH oscillations are carried out and key transport parameters, including the electron effective mass $m^{\ast }\sim 0.028 m_{0}$ and the quantum lifetime $\tau \sim 0.046 $ ps, in the InSb nanosheet are extracted. It is for the first time that such experimental measurements have been reported for a free-standing InSb nanosheet and the results obtained indicate that InSb nanosheet/hBN/graphite gate structures can be used to develop advanced quantum devices for novel physics studies and for quantum technology applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号