首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9347篇
  免费   1659篇
  国内免费   841篇
化学   9416篇
晶体学   71篇
力学   87篇
综合类   25篇
数学   9篇
物理学   2239篇
  2024年   16篇
  2023年   152篇
  2022年   355篇
  2021年   500篇
  2020年   671篇
  2019年   531篇
  2018年   468篇
  2017年   539篇
  2016年   741篇
  2015年   720篇
  2014年   801篇
  2013年   924篇
  2012年   830篇
  2011年   818篇
  2010年   632篇
  2009年   623篇
  2008年   538篇
  2007年   488篇
  2006年   377篇
  2005年   297篇
  2004年   194篇
  2003年   177篇
  2002年   132篇
  2001年   114篇
  2000年   75篇
  1999年   57篇
  1998年   28篇
  1997年   15篇
  1996年   8篇
  1995年   8篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   7篇
  1985年   2篇
  1983年   3篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
A colorimetric method based on silver nanoparticles was developed for the determination of melamine in milk. Silver nanoparticles were synthesized without any stabilizer, using sodium borohydride as the reducing agent. Optimization of the variables for the formation of the nanoparticles was performed by factorial design, resulting in stable colloidal silver nanoparticles with a mean diameter of 14.0?±?2.7?nm. Spectrophotometric measurements performed at 475?nm showed a linear range from 0.033 to 1.50?mg?L?1 of melamine with limits of detection and quantification of 0.009 and 0.031?mg?L?1, respectively. The method provided highly sensitive determination of melamine in milk.  相似文献   
163.
ABSTRACT

Methods have been found for sintering titania nanoparticles at low temperature, e.g., <150°C, and for rapid sensitization of the sintered particles. This discovery means that dye-sensitized, titania solar cells can be made on flexible substrates, such as poly(ethylene terephthalate), in a continuous roll-to-roll manufacturing process. The ability to produce solar cells in a continuous fashion should substantially lower the cost of the cells compared to batch processed, on-glass cells. The combined attributes of spectral sensitivity, flexibility, light weight, impact resistance and low cost should find utility a variety of handheld appliances in both indoor and outdoor situations. In its most advanced state of development, this technology would find application in off-grid power generation and thus provide the opportunity of bringing solar generated electricity to rural areas of the world.  相似文献   
164.
In this paper are presented the static and dynamic mechanical investigation of chemically cross-linked low density polyethylene (XLPE) prepared in our laboratory. This polymer has been tested mechanically at different frequencies, amplitudes, and temperatures as a function of cross-link density which is indicated to some extent by the amount of peroxide used in the cross-linking. The main findings can be described as follows: mechanical damping in XLPE at the α-relaxation point as a function of peroxide concentration is different for shear and compression modes of deformation. Moreover, the dynamic investigation at very small amplitudes indicated two relatively rigid structures. One structure at low concentration of peroxide is attributed to excessive crystallinity; the other one at the high peroxide concentration is probably due to the very regular and perfect polyethylene network. These two interesting structures are not detected by dynamical testing with large amplitudes. As far as Young's modulus as a function of peroxide concentration is concerned, we conclude that in this polymer this factor does not depend on the crystallinity but on changes of the so-called hard amorphous phase. These findings are consistent with our previous structural investigation.  相似文献   
165.
The porosity of 1‐hexanethiol‐functionalised gold nanoparticle films was assessed and utilised as chemiresistor sensors. Electrochemical capacitance measurements showed that the accessibility of electrolytes of different ionic strengths into the pores depended on the thickness of the electric double layer formed. A large variation in capacitance was measured in 0.01–1000 mM NaClO4, implying a wide pore size distribution. The change in morphology of the nanoparticle films upon storage in air, water and ethanol for two weeks was investigated. There was a significant decrease in the electrochemical capacitance at high electrolyte concentrations for the ethanol‐stored films compared to the freshly‐prepared films suggesting a decrease in the number of small pores of radii in the range of 0.3–3 nm. This was further supported by optical topographical measurements where a decrease in the thickness of ethanol‐stored films was observed relative to the freshly‐prepared films. The porous nature of the nanoparticle films was found to have an effect on the chemical sensing behaviour. When used as chemiresistor sensors, for the detection of heptane in water, the ethanol‐stored films provided larger resistance changes and longer response times. This suggests that the more densely packed ethanol‐stored films provided more sites that enabled film swelling, and that diffusion of the analyte occurred through the narrower water‐filled pores. This demonstrates the effect of different storage conditions on film morphology and subsequently sensor response.  相似文献   
166.
167.
168.
169.
170.
Essentially, the term aerogel describes a special geometric structure of matter. It is neither limited to any material nor to any synthesis procedure. Hence, the possible variety of materials and therefore the multitude of their applications are almost unbounded. In fact, the same applies for nanoparticles. These are also just defined by their geometrical properties. In the past few decades nano‐sized materials have been intensively studied and possible applications appeared in nearly all areas of natural sciences. To date a large variety of metal, semiconductor, oxide, and other nanoparticles are available from colloidal synthesis. However, for many applications of these materials an assembly into macroscopic structures is needed. Here we present a comprehensive picture of the developments that enabled the fusion of the colloidal nanoparticle and the aerogel world. This became possible by the controlled destabilization of pre‐formed nanoparticles, which leads to their assembly into three‐dimensional macroscopic networks. This revolutionary approach makes it possible to use precisely controlled nanoparticles as building blocks for macroscopic porous structures with programmable properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号