首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1836篇
  免费   222篇
  国内免费   721篇
化学   1961篇
晶体学   27篇
力学   54篇
综合类   4篇
数学   6篇
物理学   727篇
  2024年   3篇
  2023年   30篇
  2022年   71篇
  2021年   87篇
  2020年   102篇
  2019年   94篇
  2018年   97篇
  2017年   102篇
  2016年   128篇
  2015年   131篇
  2014年   135篇
  2013年   205篇
  2012年   168篇
  2011年   196篇
  2010年   176篇
  2009年   170篇
  2008年   152篇
  2007年   167篇
  2006年   121篇
  2005年   128篇
  2004年   97篇
  2003年   73篇
  2002年   49篇
  2001年   28篇
  2000年   24篇
  1999年   23篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1990年   3篇
  1984年   1篇
排序方式: 共有2779条查询结果,搜索用时 15 毫秒
101.
The generation of highly organized amyloid fibrils is associated with a wide range of conformational pathologies, including primarily neurodegenerative diseases. Such disorders are characterized by misfolded proteins that lose their normal physiological roles and acquire toxicity. Recent findings suggest that proteostasis network impairment may be one of the causes leading to the accumulation and spread of amyloids. These observations are certainly contributing to a new focus in anti‐amyloid drug design, whose efforts are so far being centered on single‐target approaches aimed at inhibiting amyloid aggregation. Chaperones, known to maintain proteostasis, hence represent interesting targets for the development of novel therapeutics owing to their potential protective role against protein misfolding diseases. In this minireview, research on nanoparticles that can either emulate or help molecular chaperones in recognizing and/or correcting protein misfolding is discussed. The nascent concept of “nanochaperone” may indeed set future directions towards the development of cost‐effective, disease‐modifying drugs to treat several currently fatal disorders.  相似文献   
102.
Relaxation dynamics of plasmons in Au−SiO2 core-shell nanoparticles have been followed by femtosecond pump-probe technique. The effect of excitation pump energy and surrounding medium on the time constants associated with the hot electron relaxation has been elucidated. A gradual increase in the electron-phonon relaxation time with pump energy is observed and can be attributed to the higher perturbation of the electron distribution in AuNPs at higher pump energy. Variation in time constants for the electron-phonon relaxation in different solvents is rationalized on the basis of their thermal conductivities, which govern the rate of dissipation of heat of photoexcited electrons in the nanoparticles. On the other hand, phonon-phonon relaxation is found to be much less effective than electron-phonon relaxation for the dissipation of energy of the excited electron and the time constants associated with it remain unaffected by thermal conductivity of the solvent.  相似文献   
103.
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.  相似文献   
104.
In order to alleviate the contradiction between injectability of the profile control agent and its profile control performance, a novel core‐shell heterogeneous structure colloidal particles (CSA) were synthesized, and the mechanism of self‐aggregation plugging was proposed. Cross‐linking inside the nanoparticles and chain‐growth polymerization via capturing acrylamide in the aqueous phase result in the formation of core‐shell heterogeneous structures as proved by TEM observation and XPS analysis. Moreover, CSA nanoparticles exhibit good hydrophilic properties, outstanding thermal stability and limited expansion capacity. Effects of different metal cations and surface group on the self‐aggregation time of CSA nanoparticles were systematically studied. Results showed that divalent cations contributed to more significant aggregation of CSA nanoparticles in comparison to monovalent cations. The increasing cations concentration and valency decreased the thickness of electric double layer, which lead to a decrease in the zeta potential. Core flooding test shows that the injection of nanoparticles which diameter is much smaller that of pore‐throats into the target reservoir can not only successfully enter the depth of porous media, but also effectively block the high permeability areas by the formation of self‐aggregation particle clusters. This study provides a new method for the equilibrium between nanoparticles injectivity and in‐depth profile control of nanoparticles.  相似文献   
105.
Convenient and integration fabrication process is a key issue for the application of functional nanofibers. A surface functionalization method was developed based on coaxial electrospinning to produce ultraviolet(UV) protection nanofibers. The titanium dioxide(TiO2) nanoparticles suspension was delivered through the shell channel of the coaxial spinneret, by which the aggregation of TiO2 nanoparticles was overcome and the distribution uniformity on the surface of polyethylene oxide(PEO) nanofiber was obtained. With the content of TiO2 increasing from 0 to 3%(mass fraction), the average diameter of nanofibers increased from (380±30) nm to (480±100) nm. The surface functionalization can be realized during the electrospinning process to gain PEO/TiO2 composite nanofibers directly. The uniform distribution of TiO2 nanoparticles on the surface of nanofibers enhanced the UV absorption and resistance performance. The maximum UV protection factor(UPF) value of composite nanofibers reaches 2751. This work presented a novel surface-functionalized way for the preparation of composite nanofiber, which has great application potential in the field of micro/nano system integration fabrication.  相似文献   
106.
无机纳米颗粒在塑料抗紫外的研究中一直备受关注,主要介绍了四种(TiO2、ZnO、SiO2、CeO2)典型的无机纳米颗粒在该领域的应用。首先归纳了其既能吸收又能反射或散射紫外线的抗紫外机理;其次,分别论述了不同无机纳米颗粒适用的紫外光波长范围,以在塑料中的添加方法和应用特点为主线,重点介绍了国内外四种无机纳米颗粒在塑料抗紫外性能中的研究现状和进展;最后,将四种无机纳米颗粒在塑料抗紫外性能中的应用特点进行了对比,提出了应用过程中存在的分散和相容性差等问题,以期为无机纳米颗粒的深入应用和发展提供一定的参考。  相似文献   
107.
In this study, the axial flow cyclone used in Tsai et al. (2004) was further tested for the collection efficiency of both solid (NaCl) and liquid (OA, oleic acid) nanoparticles. The results showed that the smallest cutoff aerodynamic diameters achieved for OA and NaCl nanoparticles were 21.7 nm (cyclone inlet pressure: 4.3 Torr, flow rate: 0.351 slpm) and 21.2 nm (5.4 Torr, 0.454 slpm), respectively. The collection efficiencies for NaCl and OA particles were close to each other for the aerodynamic diameter ranging from 25 to 180 nm indicating there was almost no solid particle bounce in the cyclone. The 3-D numerical simulation was conducted to calculate the flow field in the cyclone and the flow was found to be nearly paraboloid. Numerical simulation of the particle collection efficiency based on the paraboloid flow assumption showed that the collection efficiency was in good agreement with the experimental data with less than 15% of error. A semi-empirical equation for predicting the cutoff aerodynamic diameter at different inlet pressures and flow rates was also obtained. The semi-empirical equation is able to predict the cutoff aerodynamic diameter accurately within 9% of error. From the empirical cutoff aerodynamic diameter, a semi-empirical square root of the cutoff Stokes number, , was calculated and found to be a constant value of 0.241. This value is useful to the design of the cyclone operating in vacuum to remove nanoparticles.  相似文献   
108.
NIR and UV exposure of systems comprising upconversion nanoparticles ( UCNP ) based on NaYF4:Tm/Yb@NaYF4, a sensitizer absorbing either in the blue or UV region, and an onium salt with weak coordinating anion resulted in formation of conjugate acid (con-H+). That was namely Ivocerin (di(4-methoxybenzoyl)diethylgermane), ITX (2-iso-propyl thioxanthone), anthracene, pyrene, rubrene, camphore quinone, and a strong fluorescent coumarin (1,1,6,6,8-pentamethyl-2,3,5,6-tetrahyhdro-1H,4H-11-oxa-3a-aza-benzo[de]anthracene-10-one). Quantification occurred by treatment with Rhodamine B lactone whose color switched to intensive red after photolytic formation of con-H+. Exposure with a NIR laser at 980 nm resulted in less con-H+ compared to 395 nm where all sensitizers absorb radiation. UCNP did not mainly interfered formation of con-H+. The different rates obtained in both experiments responsibly explain the failure and success to initiate polymerization of epoxides applying ether 980 nm or 395 nm excitation, respectively.  相似文献   
109.
在葡萄糖水溶液中合成得到平均粒径为5 nm的α-Ni(OH)2超微纳米粒子。研究结果发现,在水溶液中葡萄糖浓度能够控制α-Ni(OH)2纳米粒子粒径的大小,我们对其中的原理进行了剖析。当没有葡萄糖存在时,合成得到的Ni(OH)2晶型为β型,且颗粒粒径尺寸分布为微米级别。另外,研究发现α-Ni(OH)2超微纳米粒子室温下对中性水溶液中Li^+具有较强的吸附性能,且这种吸附性能随粒径的减小而剧烈增大;粒径为5 nm的α-Ni(OH)2粒子对Li^+的最大吸附量为214 mg·g^-1(远大于文献报道的有关吸附剂对Li^+的吸附容量),而粒径为1μm的β-Ni(OH)2在相同条件下对Li^+的最大吸附量低于30 mg·g^-1。计算分析表明,Li^+在α-Ni(OH)2纳米粒子表面吸附满足Freundlich方程,符合层层吸附模型。  相似文献   
110.
利用时域有限差分方法研究了金纳米球、金纳米球壳及多层球壳的消光特性及电场分布.结果表明:金纳米颗粒的几何参量对消光峰的位置有显著影响.随着SiO2核心半径的增大,金纳米壳的消光峰显著红移.随着金核心半径的增大,gold-silica-gold多层球壳消光谱的低能峰显著红移,而高能峰微弱蓝移.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号