首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1959篇
  免费   133篇
  国内免费   339篇
化学   2048篇
晶体学   22篇
力学   10篇
综合类   1篇
数学   1篇
物理学   349篇
  2024年   8篇
  2023年   80篇
  2022年   98篇
  2021年   135篇
  2020年   111篇
  2019年   149篇
  2018年   116篇
  2017年   140篇
  2016年   113篇
  2015年   97篇
  2014年   136篇
  2013年   133篇
  2012年   136篇
  2011年   140篇
  2010年   105篇
  2009年   119篇
  2008年   116篇
  2007年   101篇
  2006年   101篇
  2005年   61篇
  2004年   61篇
  2003年   37篇
  2002年   24篇
  2001年   18篇
  2000年   10篇
  1999年   13篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   6篇
  1991年   3篇
  1990年   17篇
  1988年   2篇
  1986年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有2431条查询结果,搜索用时 0 毫秒
71.
A novel fluorescent probe was developed for formaldehyde, which can be synthesized by one-step Buchwald–Hartwig reaction. When hydrazino-group of probe reacted with formaldehyde, hydrophobic reaction product aggregates into nanoparticles and results in the blue fluorescence due to the monomer-excimer effect. With enough sensitivity, high selectivity, good stability in physiological pH range and excellent biocompatibility, this probe can image formaldehyde in living cells.  相似文献   
72.
In this study, we have successfully synthesized a new coumarin based fluorescent chemosensor 1, in which tren and quinolone are introduced as receptors for sequential recognition of Cu2+ and PPi. The structure of chemosensor 1 was characterized by 1H NMR, 13C NMR and ESI-HR-MS. Sensor 1 showed an obvious “on-off” fluorescence quenching response toward Cu2+, and the quenching efficiency reached a maximum of 99.6% with the addition of 20 equiv. of Cu2+. The 1-Cu2+ complex showed an “off-on” fluorescence enhancement response toward PPi over many competitive anions, especially HPO42? and H2PO4?. The detection limit of sensor 1 was 1.9?×?10?6?M to Cu2+ and 5.96?×?10?8?M to PPi. In addition, sensor 1 showed a 1:1 binding stoichiometry to Cu2+ and sensor 1-Cu2+ showed a 2: 1 binding stoichiometry to PPi in CH3CN/HEPES buffer medium (9:1 v/v, pH?=?7.4). The stable pH range of sensor 1 to Cu2+ and 1-Cu2+ to PPi was from 4 to 8.  相似文献   
73.
Electrochemical conversion of CO2 into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO2 structure, ultrathin Pd nanosheets partially capped by SnO2 nanoparticles, is designed to enable multi‐electron transfer for selective electroreduction of CO2 into CH3OH. Such a structure design not only enhances the adsorption of CO2 on SnO2, but also weakens the binding strength of CO on Pd due to the as‐built Pd–O–Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal‐based catalysts by creating metal oxide interfaces for selective electroreduction of CO2.  相似文献   
74.
Microporous carbon shows the highest supercapacitor performance among other carbon nanomaterials, and thus, is considered as the most promising candidate for the fabrication of high-performance supercapacitors. However, it has puzzled the researchers as micropores do not have enough space for the formation of the so-called double layer. Several models have been proposed to explain the mechanism of energy storage by microporous supercapacitors. The most common one is that the micropores are initially filled by both anions and cations, and charging/discharging is via ion-exchange through these single row-filled micropores. Although this theory has been supported by several computational calculations, it is discussed here that this model is in disagreement with the experimental facts commonly accepted in the literature.  相似文献   
75.
In this study, a novel ‘fiber‐in‐tube’ configuration was applied to electrochemically controlled fiber‐in‐tube solid‐phase microextraction of antipsychotic drugs (perphenazine and chlorpromazine) from biological samples. To prepare an electrochemically controlled fiber‐in‐tube solid‐phase microextraction column, first eight stainless‐steel wires were placed into the stainless‐steel column. Then, a nanostructured Cu‐Cr‐Al ternary layered double hydroxide/polythiophene coating was prepared on the inner surface of the stainless‐steel tube and on the surfaces of the stainless‐steel wires by a facile in situ electrodeposition method. The nanostructured coating exhibited enhanced long lifetime, good mechanical stability, high porosity, and large specific surface area compared with polythiophene and Cu‐Cr‐Al layered double hydroxide coatings. Under the optimal conditions, the limits of detection were in the range of 0.07–0.8 μg/L. This method showed good linearity for perphenazine and chlorpromazine in the ranges of 0.3–300 and 0.2–300 μg/L, respectively, with coefficients of determination more than 0.9982. The inter‐ and intra‐assay precisions (RSD%, n = 3) were in the ranges of 3.0–5.1 and 2.5–4.5% at three concentration levels of 5, 25 and 50 μg/L, respectively. Finally, the method was applied for the analysis of the drugs in human urine and plasma samples.  相似文献   
76.
以硝酸钴、碳酸钠、尿素为原料,泡沫镍为基体,采用水热和煅烧相结合的二步法制备了一种多级花状Co_3O_4/Ni异质结构的无酶葡萄糖传感器。通过X射线衍射与扫描电镜对Co_3O_4/Ni电极的成分及形貌进行了表征,并采用循环伏安法在1mol/L KOH溶液中测试了Co_3O_4/Ni异质结构葡萄糖传感器电极的电化学性能。结果表明,通过二步法在泡沫镍表面制备的Co_3O_4呈现多级花状纳米纤维结构。将制备的Co_3O_4/Ni异质结构作为电极构建的无酶葡萄糖传感器表现出响应时间快(低于5s)、检测灵敏度高(7.4m A·(mmol/L)~(-1)·cm~(-2))、检出限低(1.17μmol/L,S/N=3)和线性检测范围宽(0~5 mmol/L)的特点。进一步的抗干扰性检测表明所制备的传感器在+0.44V vs.SCE对葡萄糖表现出良好的选择性。本文所制备的多级花状Co_3O_4基电极在无酶葡萄糖传感器的发展中有着很大的应用潜力。  相似文献   
77.
A novel H2S-responsive fluorescent probe Rh-Lyso-H2S has been designed and synthesized. The Rh-Lyso-H2S shows high sensitivity and selectivity toward H2S, with a limit of detection of 3.36?×?10?7?M. The reason is that Rh-Lyso-H2S changed from a stable non-conjugated closed-ring lactone conformation with weak fluorescence to a conjugated open-ring conformation with strong fluorescence in the presence of H2S. The Rh-Lyso-H2S has a good lysosome-targeting capacity and is used to detect lysosomal H2S in living cells, which is driven via the protonation of its basic morpholine moiety by acidic lysosomes. Rh-Lyso-H2S is triggered by H2S via removing the thiophenecarboxylate group, and the corresponding activated mechanism of Rh-Lyso-H2S toward H2S is proposed.  相似文献   
78.
Ovalbumin-stabilized gold nanoclusters(OVA@AuNCs) were prepared with ascorbic acid as a reducing agent. This strategy could realize the synthesis of water-soluble OVA@AuNCs within 20 min. The asprepared fluorescent probe showed a red fluorescence emission at 630 nm. Moreover, the properties of the OVA@AuNCs were characterized by transmission electron microscope, dynamic light scattering,ultraviolet-visible spectroscopy, fluorescent spectroscopy. Based on the surface electron density decrease-induced fluorescence quenching mechanism, the OVA@AuNCs provided high sensitivity and selectivity for sensing copper ions. A good linear relationship was obtained between the fluorescence intensity of OVA@AuNCs and the concentration of copper ions in the range of 5.0-100.0 μmol/L(R~2=0.999) with a detection limit of 640 nmol/L Furthermore, the rat serum copper contents were determined by using the OVA@AuNCs based assay, indicating great potential of fluorescent probes for application in biological and clinical analysis.  相似文献   
79.
Fluorescent nano-probes with particle sizes of 20 nm, 120 nm and 300 nm for proton were prepared through click reaction. The photophysical properties of the nano-probes were mainly affected by the particle size.  相似文献   
80.
This review summarizes the design principles, recognition mechanisms, properties and functions of various kinds of small-molecule fluorescent probes for the detection of carbon dioxide  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号