排序方式: 共有95条查询结果,搜索用时 15 毫秒
31.
32.
紫外辐照接枝制备亲水性两性纳滤膜 总被引:2,自引:0,他引:2
通过紫外辐照在酚酞基聚芳醚酮(PEK-C)超滤膜表面引发自由基共聚反应, 依次接枝二甲基二烯丙基氯化铵(DADMAC)和对苯乙烯磺酸钠(SSS), 制成亲水性、表面载有两种不同电荷的纳滤膜. 通过测定膜的纯水通量和对不同盐溶液表观截留率的变化, 系统研究了单体浓度和接枝时间对膜的分离性能的影响. 结果表明, 用这种方法制成的亲水性两性纳滤膜对盐溶液的截留作用与两种单体在接枝液中的浓度和接枝时间有关. 膜对由高价同离子和高价反离子组成的盐表现出优良的截留作用. 相似文献
33.
Serkan ACAR Hacer Yeim CENGZ Aya ERGÜN Eymen KONYALI Hüseyin DELG
Z 《Turkish Journal of Chemistry》2020,44(4):1134
This study deals with selective separation of mono- and divalent cations from aqueous salt solutions using polymeric films based on polyethylene (PE) and polyamide6 (PA6), and two different commercial nanofiltration (NF) membranes. The diffusion rates (D) of ions (Na+ and Ca2+), separation factors (α) and ion rejections (R) of the films and NF membranes are examined comparatively as well as their surface morphology and hydrophilicity. It is observed that the diffusion rates of Na+ are in the range of 0.7–1.8 × 10−8cm2 .s−1 in the decreasing order of PE > NF90 > NF270 > PA6 while Ca2+ shows diffusion rates of 7.4–18.4 × 10−8 cm2 .s−1 in the increasing order of NF270 > NF90 ≈ PA6 > PE. Rejection values of the polymeric films and NF membranes against to Na+ and Ca2+ vary between 90% and 99.6%.The highest α(Ca2+/Na+) is found to be 20 for PA6 film. D, α, and R value of both polymeric films and NF membranes are strongly affected by the existence of osmosis during diffusion-dialysis and the sizes of hydrated sodiu and calcium ions. In conclusion, the film based on PA6 may be a good alternative for selective separation of mono- an divalent cations. 相似文献
34.
The presence of industrial pollutants, especially salts, heavy metals ions, and dyes in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, a high-performing nanofiltration (NF) membrane was prepared by blending the functionalized mesoporous carbon CMK-5 (F-CMK-5) nanofiller. This membrane was synthesized by introducing the active groups of sulfonyl and amide to the surface of mesoporous carbon CMK-5 through covalent functionalization. Characterizations were conducted to study the membranes' physical properties and separation performance in terms of antifouling properties and rejection of salts, heavy metal ions, and dyes. The interactions between the active sites of the nanocomposite membrane and the studied solutes, including dyes and heavy metal ions in aqueous solutions, were studied by the density functional based tight binding method and structural optimization was carried out. Insertion of the F-CMK-5 nanofiller was eventuated in a remarkable increase in surface hydrophilicity, pure water flux, and antifouling properties. For all membranes, the lowest and the highest salt rejection was obtained for NaCl and Na2SO4, respectively, exhibiting the characteristics of NF membranes. Moreover, M0.3 with 0.3 wt% nanofiller showed the highest rejection for heavy metal ions (Fe2+ = 99.9%, Zn2+ = 99.9%, Cu2+ = 99.7%, and Pb2+ = 99.2%) and dyes (RB5 = 99.21, DR16 = 98.87, and MB = 98.12%), as well as high separation performance for filtration of multipollutant solutions. The reusability and 144 h uninterrupted filtration experiments for M0.3 confirmed the stability of the membrane. The findings suggest that the PES/F-CMK-5 nanocomposite NF membrane is a promising candidate for water and wastewater treatment. 相似文献
35.
高分子纳滤膜的研究及进展 总被引:5,自引:0,他引:5
对高分子纳滤膜的发展背景以及国内外在这一领域的研究的研究进展作了详细的介绍。 相似文献
36.
K.R. Balaji R. Hardian V.G.D. Kumar R. Viswanatha S. Kumar S. Kumar A. Singh M.S. Santosh G. Szekely 《Materials Today Chemistry》2021
Composite nanofiltration membranes offer advantages because of synergetic effects among the constituent materials’ properties. However, the sustainability of both the membrane fabrication and the raw materials has been a drawback of this energy-efficient separation technology. We report the facile fabrication of a nanocomposite membrane composed of a two-dimensional (2D) material of reduced graphene oxide (rGO) combined with a one-dimensional (1D) material of a ternary metal-based chalcogenide (NaFeS2 or NFS) using silkworm pupae protein as a natural binder. All the source materials can be derived from either nature or waste, ensuring the sustainability of the membrane and its production method. The structural characteristics of the synthesized membranes were analyzed, and the morphology of the composite membranes was studied thoroughly. Thermogravimetric analysis, differential scanning calorimetry, and nanoindentation characterizations indicated that the composite membranes were mechanically and thermally stable. The water and acetone fluxes; salt, dye, and pollutant rejections; and long-term membrane performance were evaluated using a cross-flow filtration system. Solute rejection was observed to increase (up to 98%, 94%, 95%, and 78% for Rhodamine B, 2,4-dichlorophenol, MgCl2, and NaCl, respectively) with increasing concentration of the nanomaterials in the membrane. The fine-tuning of the molecular weight cutoff from 794 to 600 g mol?1 was achieved by varying the concentration of the nanomaterials from 1 to 3 mg mL?1. Our research findings demonstrate the synergetic effects of combining 1D and 2D materials using silkworm pupae binder. The composite membrane was stable in different classes of organic solvents, including hydrocarbons, alcohols, esters, ethers, polar aprotic solvents, halogenated solvents, and ketones. This first use of natural pupae binder in constructing membrane materials paves the way toward the development of more sustainable membranes. 相似文献
37.
Pieter Vandezande Xianfeng Li Lieven E.M. Gevers Ivo F.J. Vankelecom 《Journal of membrane science》2009,330(1-2):307-318
High throughput (HT) techniques were applied for the first time for a detailed study of parameters involved in a phase inversion process. The synthesis of integrally skinned asymmetric polyimide (Matrimid®) membranes was investigated. In spite of being one of the most important materials of reference in solvent resistant nanofiltration (SRNF), a detailed study of the phase inversion parameters for this system is still missing. Phase inversion parameters were selected both on the level of the composition of the casting solution (polymer concentration, solvent type, co-solvent/solvent weight ratio, non-solvent content) as on the level of the post-casting (evaporation time) and immersion (composition coagulation medium) conditions. The study of this extensive parameter space was conducted in a HT-fashion, in which the entire membrane preparation and testing process was miniaturized, parallellized and automated. Thanks to the availability of reliable HT techniques at all levels (i.e. preparation of polymer solutions, membrane casting and membrane testing), 145 membranes were prepared and tested (in triplicate) in the separation of the dye rose Bengal from 2-propanol within a time frame of a few months, meaning a dramatic improvement in time- and cost-efficiency. An attempt was made to link the SRNF performances of the prepared membranes and their SEM-observed morphologies more fundamentally to the phase inversion parameters through the use of Hansen solubility parameters and viscosity measurements. 相似文献
38.
The slow flow of a multicomponent electrolyte solution in a narrow pore of a nanofiltration membrane is considered. The well-known semiempirical method of subdivision of electrical potential into quasi-equilibrium and streaming parts and the definition of streaming concentrations and pressure are discussed. The usefulness of this tool for solving the electrohydrodynamic equations is shown and justified: the use of a small parameter enables a system of electrohydrodynamic partial differential equations to be reduced to a system of ordinary differential equations for streaming functions. Boundary conditions for streaming functions at both the capillary inlet and outlet are derived. The proposed model is developed for the flow of a multicomponent electrolyte solution with an arbitrary number of ions. This is coupled with (i) the introduction of specific interactions between all ions and the pore wall and (ii) the inclusion of the dissociation of water in both conservation and transport equations. Effective distribution coefficients of ions are introduced that are functions of both the specific interaction potentials and the surface potential of the nanofiltration membrane material. The axial dependency of surface potential is expressed by the use of a charge regulation model from which the discontinuity in electric potential and ion pore concentrations at the pore inlet and outlet can be described.A relation between the frequently used capillary and homogeneous models of nanofiltration membranes is developed. An example of application of the homogeneous model for interpretation of experimental data on nanofiltration separation of electrolyte solutions is presented, which shows a reasonable predictive ability for the homogeneous model. 相似文献
39.
Y. Mansourpanah S.S. Madaeni A. Rahimpour A. Farhadian A.H. Taheri 《Journal of membrane science》2009,330(1-2):297-306
Titanium dioxide (TiO2) nanoparticles were assembled on the surface of nanofiltration blend membrane. For settling TiO2 on the membrane surface, two membrane categories were used: (i) unmodified polyethersulfone (PES)/polyimide (PI) blend membrane, and (ii) –OH functionalized PES/PI blend membrane with different concentrations of diethanolamine (DEA). These membranes were radiated by UV light after TiO2 depositing with different concentrations. 15 min immersion in colloidal suspension and 15 min UV irradiation with 160 W lamps were used for modification. The modification resulted in the formation of a photo-catalytic property with enhanced membrane hydrophilicity. The self-assembly of TiO2 nanoparticles was established through coordinance bonds with –OH functional groups on the membrane surface. A comparison between the UV irradiated TiO2 deposited blend membrane and deposited-functionalized blend membranes showed that –OH groups originate excellent adhesion of TiO2 nanoparticles on the membrane surface, increase reversible deposition, and diminish irreversible fouling. The membranes were characterized using SEM, FTIR, EDX, contact angle, cross flow filtration, and antifouling measurements. SEM images show that the presence of –OH groups on the DEA-modified membrane surface is the main parameter for extra uniformly settlement of TiO2 nanoparticles on the membrane surface. This procedure is a superior technique for modification of PES/PI nanofiltration membranes to enhance water flux and minimization membrane fouling. 相似文献
40.
利用氨气低温等离子体对壳聚糖聚丙烯腈复合膜进行表面改性,制成了在低压、弱酸条件下,带正电荷的壳聚糖一聚丙烯腈复合纳滤膜。探讨了等离子处理时间、放电功率对膜亲水性改善效果的影响,采用单因素实验确定了最佳等离子体处理条件。通过扫描探针显微镜、接触角测试、表面光电子能谱检测等手段对膜表面进行了表征。经过等离体改性后,复合膜的亲水性及纳滤性能均大幅提高。改性后,在0.05MPa、pH≈6.7条件下,壳聚糖一聚丙烯腈复合膜对0.1mol/L的),一氨基丁酸溶液的通量为3.19L/(m^2·h),截留率为78%。 相似文献