首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1558篇
  免费   285篇
  国内免费   264篇
化学   1222篇
晶体学   14篇
力学   39篇
综合类   3篇
数学   27篇
物理学   802篇
  2024年   8篇
  2023年   22篇
  2022年   51篇
  2021年   61篇
  2020年   99篇
  2019年   74篇
  2018年   72篇
  2017年   85篇
  2016年   99篇
  2015年   74篇
  2014年   95篇
  2013年   192篇
  2012年   135篇
  2011年   118篇
  2010年   96篇
  2009年   99篇
  2008年   126篇
  2007年   101篇
  2006年   107篇
  2005年   86篇
  2004年   78篇
  2003年   51篇
  2002年   40篇
  2001年   40篇
  2000年   26篇
  1999年   23篇
  1998年   14篇
  1997年   8篇
  1996年   10篇
  1995年   2篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有2107条查询结果,搜索用时 15 毫秒
51.
It remains challenging to satisfy the combined performances for hydrogels with excellent mechanical behavior, high deformability, and super recoverability under harsh environmental conditions. In this study, we first established a strong polymer network via the crosslinking of polymer chains on the surfaces of sub‐5‐nm calcium hydroxide nanospherulites in ethylene glycol solvent. The organic gel expressed excellent mechanical properties such as a recoverable compressive engineering stress of 249 MPa and an elongation stress of 402 KPa, which was attributed to the uniform nanosized crosslinking structure as characterized by SEM. Moreover, the nonvolatile solvent remained in the gel, meaning that the sample can resist a wide temperature range of ?56 to 100 °C without losing the elastic properties. This novel organic gel could provide promising routes to develop the ideal elastic carriers for wearable devices, smart skin sensors, and damping materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 713–721  相似文献   
52.
In this work, a magnetic hybrid dichromate nanocomposite with triphenylphosphine surface modified superparamagnetic iron oxide nanoparticles (SPIONs) as a recyclable nanocatalyst was designed, prepared and characterized by Fourier transform infrared spectroscopy (FT‐IR) spectra, X‐ray diffraction (XRD) pattern analysis, vibrating sample magnetometer (VSM) curves, X‐ray fluorescence (XRF) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images and dynamic light scattering (DLS) analysis. Then, it was used in a green and efficient procedure for one‐pot multicomponent synthesis of polyhydroquinoline derivatives by the condensation of aldehydes, dimedone or 1,3‐cyclohexadione, ethyl acetoacetate and ammonium acetate. This protocol includes some new and exceptional advantages such as short reaction times, low catalyst loading, high yields, solvent‐free and room temperature conditions, easy separation and reusability of the catalyst.  相似文献   
53.
Efficient sunlight-responsive BiOBr–CoWO4 heterostructured nanocomposite photocatalysts were prepared via a chemical precipitation route at 100°C in 4 hours. The prepared BiOBr–CoWO4 heterostructures were characterized for phase identification, chemical composition, surface morphology, optical properties and surface area using various techniques. The X-ray diffraction pattern of the BiOBr–CoWO4 nanocomposite was composed of diffraction peaks equivalent to both the tetragonal phase of BiOBr and the monoclinic phase of CoWO4 nanoparticles. X-ray photoelectron spectral study of the BiOBr–CoWO4 nanocomposite revealed orbitals of both BiOBr and CoWO4 compounds. Transmission electron microscopy images revealed that spherical particles of CoWO4 (20–25 nm) were dispersed on the surface of BiOBr. UV–visible–near-infrared spectral study of the BiOBr–CoWO4 nanocomposite showed good visible-light absorption. Among the manufactured materials, BiOBr–CoWO4-2 nanocomposite showed better charge carrier separation efficiency, as demonstrated by photoluminescence and time-resolved fluorescence. To study the practical utility of the prepared materials, their photocatalytic capability was examined for the degradation of rhodamine B (RhB) aqueous solution under sunlight irradiation. The photodegradation results showed that BiOBr–CoWO4-2 nanocomposite degraded 98.69% RhB solution and the degradation constant was 0.067 min−1, which was 5.6 and 22.5 times larger than that of pure BiOBr and CoWO4 nanoparticles, respectively, after 60 minutes of sunlight irradiation. The superior photoactivity was facilitated by electron–hole pair separation and transfer driven by the heterostructure interface between BiOBr particles and CoWO4 nanoparticles. The removal of RhB was initiated by photogenerated h+, O2• − and OH reactive species based on the scavenger effect.  相似文献   
54.
Traditional hot injection methods for the preparation of cesium lead halide perovskite nanocrystals (CsPbX3 PNCs, where X=Cl, Br, or I) rely on small molecule surfactants to produce PNCs with cube, plate, or rod-like morphologies. Here, we describe a new method whereby zwitterionic block copolymers are employed as macromolecular ligands in PNC synthesis, affording PNCs with excellent colloidal stability, high photoluminescence quantum yield, and in some cases distinctly non-cubic shapes. The block copolymers used in this study – composed of a poly(n-butyl methacrylate) hydrophobic block and zwitterionic methacrylate hydrophilic blocks – dissolve in useful solvents for PNC growth despite containing large mole percentages of zwitterionic groups. PNCs prepared with block copolymer ligands were found to disperse and retain their fluorescence in a range of polar organic solvents and were amenable to direct integration into optically transparent nanocomposite thin films with high PNC content.  相似文献   
55.
《Physics letters. A》2019,383(19):2272-2276
Magnetic field design is important in cylindrical Hall thrusters and using permanent magnets to generate magnetic field is very promising in the future. In two typical permanent magnet configurations (i.e., ring and cylindrical configurations) of cylindrical Hall thrusters, discharge characteristics are compared in this paper through the experiments and simulations. The study shows that the cylindrical configuration can bring about higher thruster performance in the same working condition. The reason is that the potential drop of the cylindrical configuration is mainly concentrated in the channel, which is beneficial for the electrons to obtain energy to promote the ionization of the propellant. However, the voltage regulation range of the cylindrical configuration is lower because the anode is more easily overheated.  相似文献   
56.
In this work, for the first time, Solanum melongena plant extract was used for the green synthesis of Pd/MnO2 nanocomposite via reduction osf Pd(II) ions to Pd(0) and their immobilization on the surface of manganese dioxide (MnO2) nanoparticles (NPs) as an effective support. The synthesized nanocomposite were characterized by various analytical techniques such as Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDS) and UV–Vis spectroscopy. The catalytic activity of Pd/MnO2 nanocomposite was used as a heterogeneous catalyst for the one‐pot synthesis of 5‐substituted 1H‐tetrazoles from aryl halides containing various electron‐donating or electron‐withdrawing groups in the presence of K 4 [Fe (CN) 6 ] as non‐toxic cyanide source and sodium azide. The products were obtained in good yields via a simple methodology and easy work‐up. The nanocatalyst can be recycled and reused several times with no remarkable loss of activity.  相似文献   
57.
《Mendeleev Communications》2020,30(4):456-458
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   
58.
Use of nanocomposites is a well-established approach in enhancing the mechanical and barrier properties of bionanocomposite film for food packaging applications. The seed mucilage of Ocimum basilicum was employed for the preparation of bionanocomposite films with montmorillonite (MMT) as nanofiller. The films were prepared by solvent-casting method at varied solution pH (1, 3, 5 and 9) and MMT loading (1%, 3%, 5%, 10%, 15% and 20%). The films were characterized for physical, mechanical and barrier properties in addition to microstructure and X-ray diffraction pattern. XRD analysis revealed the exfoliated dispersion of MMT at pH 9, confirming its effective interaction with the bionanocomposite film. Maximum film tensile strength was achieved at a lower MMT load of 5%. Water vapour permeability reduced with increase in MMT loading up to 5%, followed by an increase at higher MMT loadings. Film formed at pH 9 showed tensile strength of 17.3 ± 0.33 MPa and reduced water vapour permeability (WVP) of 0.21 g mm.m−2.hr−1.kPa−1.  相似文献   
59.
A new dicarboxylic acid modified Mg‐Al LDH (DLDH) containing imide groups was prepared and its effects on the thermal and mechanical properties of the new synthesized aliphatic‐aromatic poly (amide‐imide) (PAI) were investigated via preparation of PAI/nanocomposite films by solution casting method. The results of X‐ray diffraction (XRD), field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) showed a uniform dispersion for LDH layers into the PAI matrix. For comparison, the effects of polyacrylic acid‐co‐poly‐2‐acrylamido‐ 2‐methylpropanesulfonic acid (PAMPS‐co‐PAA) modified Mg‐Al LDH (ALDH) on the PAI properties were also studied. The thermogravimetric analysis (TGA) results exhibited that the temperature at 5 mass% loss (T5) increased from 277 °C to 310 °C for nanocomposite containing 2 mass% of DLDH, while T5 for nanocomposite containing 2 mass% of ALDH increased to 320 °C, along with the more enhancement of char residue compared to the neat PAI. According to the tensile test results, with 5 mass% DLDH loading in the PAI matrix, the tensile strength increased from 51.6 to 70.8 MPa along with an increase in Young's modulus. Also the Young's modulus of PAI nanocomposite containing 5 mass% ALDH reduced from 1.95 to 0.81 GPa.  相似文献   
60.
In this work, a simple and green method is reported for the biosynthesis of Cu/bone nanocomposite using Cordyline fruticosa extract as a stabilizer and reductant. Animal bone was used as a natural support to prevent the accumulation of Cu nanoparticles. The catalytic activity of Cu/bone nanocomposite was assessed in the synthesis of 1‐substituted 1H‐1,2,3,4‐tetrazoles and reduction of various organic dyes, including 4‐nitrophenol (4‐NP), nigrosin (NS), congo red (CR) and methylene blue (MB). The best catalytic performance in the synthesis of 1‐substituted tetrazoles was achieved using 0.05 g of Cu/bone nanocomposite at 120°C. In addition, under optimal conditions, the absorption bands corresponding to 4‐NP, CR, NS and MB completely disappeared after about 6 min, 3 min, 50 s and 7 s, respectively. The biosynthesis protocol used in the preparation of Cu/bone nanocomposite offers a very attractive area for further research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号