首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2224篇
  免费   231篇
  国内免费   208篇
化学   2321篇
晶体学   13篇
力学   28篇
综合类   3篇
数学   12篇
物理学   286篇
  2024年   12篇
  2023年   56篇
  2022年   69篇
  2021年   77篇
  2020年   120篇
  2019年   115篇
  2018年   96篇
  2017年   131篇
  2016年   163篇
  2015年   113篇
  2014年   125篇
  2013年   277篇
  2012年   125篇
  2011年   133篇
  2010年   109篇
  2009年   115篇
  2008年   138篇
  2007年   115篇
  2006年   109篇
  2005年   103篇
  2004年   101篇
  2003年   74篇
  2002年   55篇
  2001年   38篇
  2000年   21篇
  1999年   22篇
  1998年   17篇
  1997年   12篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有2663条查询结果,搜索用时 15 毫秒
991.
A robust synthetic strategy where polysaccharide derivative precursors react through aqueous Diels–Alder chemistry without the involvement of catalysts and coupling reagents, allowing for the direct encapsulation of positive and negative proteins within biodegradable hydrogels. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for polysaccharide bioconjugation. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gels with ideal structures, which provides a competitive alternative to conventional conjugation techniques such as click chemistry.

  相似文献   

992.
基于AuNPs/PDDA-GO纳米复合物制备了一种新型电化学免疫传感器, 并将其用于SirT1的检测. 首先, 在电极表面修饰复合材料AuNPs/PDDA-GO, 然后将目标蛋白SirT1固定到修饰了AuNPs/PDDA-GO的电极表面, 再通过特异性免疫反应结合一抗(Ab1)和辣根过氧化酶标记的二抗分子(HRP-Ab2), 最后用示差脉冲伏安法检测电流信号, 实现了对SirT1蛋白水平的测定. 在优化的实验条件下, SirT1蛋白的浓度在0.1~100 ng/mL范围内与响应电流呈良好线性关系, 检出限为0.029 ng/mL.  相似文献   
993.
The low solubility of carbon nanostructures (CNs) in water and the need of ordered architectures at the nanoscale level are two major challenges for materials chemistry. Here we report that a novel amino acid based low‐molecular‐weight gelator (LMWG) can be used to effectively disperse pristine CNs in water and to drive their ordered self‐assembly into supramolecular hydrogels. A non‐covalent mechanochemical approach has been used, so the π‐extended system of the CNs remains intact. Optical spectroscopy and electron microscopy confirmed the effective dispersion of the CNs in water. Electron microscopy of the hydrogels showed the formation of an ordered, LMWG‐assisted, self‐assembled architecture. Moreover, the very same strategy allows the solubilization and self‐assembly in water of a variety of hydrophobic molecules.  相似文献   
994.
We report the effect of dispersion of zinc oxide (ZnO) nanoparticles (NPs) on the conductivity, birefringence and fluorescence properties of commercially available room temperature nematic liquid crystal (LC) with the variation of dopant concentration. Significant changes have been observed in transition enthalpy, DC conductivity, photoluminescence and birefringence values of the LC material by the addition of ZnO NPs. While the inclusion of NPs enhances the electrical conductivity of the composite system, it results in a reduction in the birefringence value, which can be attributed to a decrease in the order parameter of the system due to the perturbed geometry of the LC. This also results in the increase in threshold voltage value, which has been speculated as due to the piezoelectric nature of the ZnO NPs. The analysis of the fluorescence spectrum indicates that ZnO NPs enhance the intensity in the LC phase along with a small blue shift.  相似文献   
995.
Peptides and polymers are the “elite” building blocks in hydrogel fabrication where the typical approach consists of coupling specific peptide sequences (cell adhesive and/or enzymatically cleavable) to polymer chains aiming to obtain controlled cell responses (adhesion, migration, differentiation). However, the use of polymers and peptides as structural components for fabricating supramolecular hydrogels is less well established. Here, the literature on the design of peptide/polymer systems for self‐assembly into hybrid hydrogels, as either peptide‐polymer conjugates or combining both components individually, is reviewed. The properties (stiffness, mesh structure, responsiveness, and biocompatibility) of the hydrogels are then discussed from the viewpoint of their potential biomedical applications.  相似文献   
996.
Summary: Conducting polypyrrole (PPy) nanoparticles were synthesized via microemulsion polymerization. PP/PPy nanocomposites were prepared by melt-mixing of polypyrrole with polypropylene (PP) and processed with injection molding. Tensile tests have revealed that increasing amount of PPy increased the strength and the stiffness of the nanocomposite while limiting the elongation of PP. Thermal gravimetric analysis has showed that incorporation of PPy nanoparticles has improved the thermal stability of the nanocomposites. Increasing amount of PPy nanoparticles increases the conductivity of nonconductive PP up to 2,4.10−4 Scm−1. The same techniques were used to characterize nanocomposites containing 2% w dispersant. Composites prepared with dispersant have involved smaller dimension PPy nanoparticles and exhibited improvement in some mechanical and thermal properties.  相似文献   
997.
Summary: Polycarbonate Acrylonitrile-Butadiene-Styrene blends (PC/ABS) with flame retardants Triphenyl Phosphate (TPP), nanoclay and their mixtures were prepared in a twin- screw extruder. The morphological properties were characterized by X-ray diffractometry (XRD) which showed the intercalated structure of nanoclay in the matrix. Thermal stability of the samples was studied using Thermogravimetric Analysis (TGA), and the degradation kinetic parameters were determined using various methods including Kissinger, Flynn-Wall-Ozawa and Coats-Redfern methods. It was found that the sample containing both TPP and nanoclay has the highest activation energy. The activation energy order of PC/ABS blends with different flame retardant packages, obtained by Kissinger method agrees well with that obtained by Coats-Redfern. Cone calorimetry and limited oxygen index (LOI)/underwriters laboratory 94 (UL94) methods were used to investigate the fire behaviour and flammability of materials. The reduced mass loss rate (MLR), peak heat release rate (PHRR) and enhanced LOI of the composite containing mixture system confirmed a synergistic effect of TPP and nanoclay.  相似文献   
998.
《先进技术聚合物》2018,29(3):1182-1190
The attempt of this research was to examine the effect of multiwalled carbon nanotube (MWCNT)‐Valine as efficient fillers on the thermal, optical, and electrical behaviors of polystyrene (PS). To reduce aggregation and obtain uniform spreading of fillers into the PS, at first, MWCNTs' surfaces were modified by Valine amino acid. Then, different contents of MWCNT‐Valine (0.5, 1, and 2 wt%) were added to PS by ultrasonication processes. The field emission scanning electron microscopy and transmission electron microscopy results showed a uniform distribution of modified MWCNTs into the matrix. The thermal properties of nanocomposites were improved by increasing nanofiller content. In addition, embedding of MWCNT‐Valine into the PS matrix increased the electrical conductivity of nanocomposites in comparison with pure PS.  相似文献   
999.
Thermochromic smart windows technology can intelligently regulate indoor solar radiation by changing indoor light transmittance in response to thermal stimulation, thus reducing energy consumption of the building. In recent years, with the development of new energy-saving materials and the combination with practical technology, energy-saving smart windows technology has received more and more attention from scientific research. Based on the summary of thermochromic smart windows by Yi Long research groups, this review described the applications of thermal responsive organic materials in smart windows, including poly(N-isopropylacrylamide) (PNIPAm) hydrogels, hydroxypropyl cellulose (HPC) hydrogels, ionic liquids and liquid crystals. Besides, the mechanism of various organic materials and the properties of functional materials were also introduced. Finally, opportunities and challenges relating to thermochromic smart windows and prospects for future development are discussed.  相似文献   
1000.
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号