首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2150篇
  免费   281篇
  国内免费   208篇
化学   2298篇
晶体学   13篇
力学   28篇
综合类   3篇
数学   12篇
物理学   285篇
  2024年   11篇
  2023年   55篇
  2022年   48篇
  2021年   77篇
  2020年   120篇
  2019年   115篇
  2018年   96篇
  2017年   131篇
  2016年   163篇
  2015年   113篇
  2014年   125篇
  2013年   277篇
  2012年   125篇
  2011年   133篇
  2010年   109篇
  2009年   115篇
  2008年   138篇
  2007年   115篇
  2006年   108篇
  2005年   103篇
  2004年   101篇
  2003年   74篇
  2002年   55篇
  2001年   38篇
  2000年   21篇
  1999年   22篇
  1998年   17篇
  1997年   12篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有2639条查询结果,搜索用时 15 毫秒
131.
132.
133.
134.
Stimuli-responsive soft materials enable controlled release of loaded drug molecules and biomolecules. Controlled release of potent chemotherapeutic or immunotherapeutic agents is crucial to reduce unwanted side effects. In an effort to develop controlled release strategies that can be triggered by using Cerenkov luminescence, we have developed polymer hydrogels that can release bovine serum albumin and immunoglobulin G by using light (254 nm–375 nm) as a trigger. We describe the synthesis and photochemical characterization of two light sensitive phenacyl bis-azide crosslinkers that are used to prepare transparent self-supporting hydrogel patches. One crosslinker was designed to optimize the overlap with the Cerenkov luminescence emission window, bearing an π-extended phenacyl core, resulting in a high quantum yield (14 %) of photocleavage when irradiated with 375 nm light. We used the extended phenacyl crosslinker for the preparation of protein-loaded dextran hydrogel patches, which showed efficient and selective dosed release of bovine serum albumin or immunoglobulin G after irradiation with 375 nm light. Cerenkov-triggered release is as yet inconclusive due to unexpected side-reactivity. Based on the high quantum yield, efficient release and large overlap with the Cerenkov window, we envision application of these photosensitive soft materials in radiation targeted drug release.  相似文献   
135.
采用简单高温煅烧法成功制备了磁性钴镍基氮掺杂三维碳纳米管与石墨烯复合材料(CoNi@NGC),将其作为吸附剂用于水体中6种双酚类化合物(BPs)的吸附性能和机理研究。将CoNi@NGC复合纳米材料用作萃取介质,运用酸碱泡腾片的CO2强力分散作用,开发了泡腾反应强化的分散固相微萃取前处理方法,结合高效液相色谱-荧光检测(HPLC-FLD)快速定量饮料中痕量BPs。采用扫描电镜、透射电镜、傅里叶红外光谱、氮气吸脱附、X射线光电子能谱和磁滞回线等技术手段对材料形貌结构进行表征,结果显示:该吸附剂成功实现氮元素的掺杂,且具有较大的比表面积(109.42 m2/g)、丰富的孔径及较强的磁性(17.98 emu/g)。吸附剂投加量、pH、温度、时间等因子优化试验表明:当pH=7,在初始质量浓度为5 mg/L的BPs混合溶液中投加5 mg CoNi@NGC, 298 K反应5 min,对双酚M(BPM)、双酚A(BPA)的吸附率分别高达99.01%和98.21%。作用90 min时对双酚Z(BPZ)、BPA、BPM的吸附率近100%。在吸附过程中,BPs与CoNi@NGC之间的整个吸附过程主要受氢键、静电作用和π-π共轭作用共同控制。整个吸附过程符合Freundlich吸附等温线模型和准二级动力学方程,吸附自发进行。进一步将CoNi@NGC作为萃取介质制备成磁性泡腾片,利用泡腾分散微萃取技术高效富集和提取6种盒装饮料中的BPs,优化了影响富集效果的泡腾片的存在与否、洗脱剂种类、洗脱时间、洗脱体积等关键因子,在最佳萃取条件下(pH=7,投加5 mg CoNi@NGC, 2 mL丙酮洗脱6 min),结合HPLC-FLD,新开发的泡腾分散微萃取方法提供的检出限为0.06~0.20 μg/L,定量限为0.20~0.66 μg/L,日内和日间精密度分别为1.44%~4.76%和1.69%~5.36%,在实际样品中不同水平下的加标回收率为82.4%~103.7%,在桃汁中检测到BPA和双酚B(BPB)分别为2.09 μg/L和1.37 μg/L。再生试验表明该吸附材料至少可以重复使用5次以上,显著降低了分析的试验成本。与其他方法相比,该方法具有灵敏度高、萃取速度快、环境友好等优点,在常规食品污染监测中具有较强的应用价值。  相似文献   
136.
Radiochromic films composed of polymer matrices and organic dyes are widely used for routine dosimetry purposes in operation of various radiation facilities—gamma and X-ray-irradiation, electron accelerators, and so on. However, the sensitivity of these films rapidly decreases at doses exceeding 30–50 kGy due to a saturation of their optical response, making them unsuitable for accurate dosimetry in radiation processing of polymers and composites where doses up to 200 kGy are typically employed. To overcome this limitation, the use of inorganic substances as the coloring agents of polymer-based radiochromic films was proposed in this paper, specifically, heteropolyacidacid H3PW12O40 (tungstophosphoric acid) in the matrix of poly(vinyl alcohol) (PVA). Nanocomposite PVA/H3PW12O40 films were prepared by solution casting and their optical responses toward 60Co gamma radiation and beams of 6 MeV electrons for a dose range of 10–200 kGy were investigated. It was established that upon exposure to gamma rays and electron beams, the films turn blue and a broad absorption band at 750 nm appears in their spectra. Importantly, the radiation-induced optical absorption increases in a linear fashion up to the dose of 150 kGy and only slightly deviates from linearity at 200 kGy. Moreover, it was found that the PVA/H3PW12O40 films have a long shelf life, are dose-rate independent within a wide range, and color-stable after irradiation. All these features make the nanocomposite PVA/H3PW12O40 films promising for use as routine dosimeters and dose labels in a much wider range of high doses as compared to radiochromic films based on organic dyes.  相似文献   
137.
Most recent advances in the synthesis of supramolecular hydrogels based on low molecular weight gelators (LMWGs) have focused on the development of novel hybrid hydrogels, combining LMWGs and different additives. The dynamic nature of the noncovalent interactions of supramolecular hydrogels, together with the specific properties of the additives included in the formulation, allow these novel hybrid hydrogels to present interesting features, such as stimuli-responsiveness, gel-sol reversibility, self-healing and thixotropy, which make them very appealing for multiple biomedical and biotechnological applications. In particular, the inclusion of magnetic nanoparticles in the hydrogel matrix results in magnetic hydrogels, a particular type of stimuli-responsive materials that respond to applied magnetic fields. This review focuses on the recent advances in the development of magnetic supramolecular hydrogels, with special emphasis in the role of the magnetic nanoparticles in the self-assembly process, as well as in the exciting applications of these materials.  相似文献   
138.
Maltose is a ubiquitous disaccharide produced by the hydrolysis of starch. Amphiphilic ureas bearing hydrophilic maltose moiety were synthesized via the following three steps: I) construction of urea derivatives by the condensation of 4-nitrophenyl isocyanate and alkylamines, II) reduction of the nitro group by hydrogenation, and III) an aminoglycosylation reaction of the amino group and the unprotected maltose. These amphiphilic ureas functioned as low molecular weight hydrogelators, and the mixtures of the amphipathic ureas and water formed supramolecular hydrogels. The gelation ability largely depended on the chain length of the alkyl group of the amphiphilic urea; amphipathic urea having a decyl group had the highest gelation ability (minimum gelation concentration=0.4 mM). The physical properties of the supramolecular hydrogels were evaluated by measuring their thermal stability and dynamic viscoelasticity. These supramolecular hydrogels underwent gel-to-sol phase transition upon the addition of α-glucosidase as a result of the α-glucosidase-catalyzed hydrolysis of the maltose moiety of the amphipathic urea.  相似文献   
139.
In this study, a green protocol for supporting CuO nanoparticles over chitosan-modified amino-magnetic nanoparticles is described. The physicochemical and morphological properties of the desired nanocomposite assessed by various techniques like ICP, FT-IR, FE-SEM, EDX, TEM, XRD and VSM. In the oncological part of the recent study, the Cu(NO3)2, Fe3O4, and Fe3O4-NH2@CS/CuO nanocomposite cell viability was very low against human gastric cancer cell lines i.e. MKN45, AGS, and KATO III and human colorectal carcinoma cell lines i.e. HT-29, HCT 116, HCT-8 [HRT-18], and Ramos.2G6.4C10. The IC50 of Fe3O4-NH2@CS/CuO nanocomposite against MKN45, AGS, KATO III, HT-29, HCT 116, HCT-8 [HRT-18], and Ramos.2G6.4C10 cell lines were 517, 525, 544, 282, 214, 420, and 477 µg/mL, respectively. Thereby, the best anti-gastro-duodenal cancers findings of our Fe3O4-NH2@CS/CuO nanocomposite was seen in the HCT 116 cell line case.  相似文献   
140.
Recently, the development of nanocatalysts based on naturally occurring polysaccharides has received a lot of attention. Chitosan (CS), as a biodegradable and biocompatible polysaccharide, is considered to be an excellent template for the design of a hybrid biopolymer-based metal oxide nanocomposite. In this case, lanthanum oxide nanoparticles doped with chitosan at different weight percentages (5, 10, 15, and 20 wt% CS/La2O3) were prepared via a simple solution casting method. The prepared CS/La2O3 nanocomposite solutions were cast in a Petri dish in order to produce the developed catalyst, which was shaped as a thin film. The structural features of the hybrid nanocomposite film were studied by FTIR, SEM, and XRD analytical tools. FTIR spectra confirmed the presence of the major characteristic peaks of chitosan, which were modified by interaction with La2O3 nanoparticles. Additionally, SEM graphs showed dramatic morphological changes on the surface of chitosan, which is attributed to surface adsorption with La2O3 molecules. The prepared CS/La2O3 nanocomposite film (15% by weight) was investigated as an effective, recyclable, and heterogeneous base catalyst in the synthesis of pyridines and pyrazoles. The nanocomposite used was sufficiently stable and was collected and reused more than three times without loss of catalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号