排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
Abstract Isobaric heat capacities of liquid n-dodecane were measured at temperatures from 313.15 to 373.15 K and at pressures up to 100 MPa using a calorimetric device based on a Calvet calorimeter (Setaram (280). These experimental data were used to perform a comparative study in order to choose, from among the great number of equations of state proposed in the literature, the most appropriate to calculate the isobaric heat capacity. 相似文献
12.
Luigi Acampora Mahdi Kooshkbaghi Christos E. Frouzakis 《Combustion Theory and Modelling》2019,23(2):197-209
The paper introduces a generalized formulation for the computation of the relative contribution of each elementary reaction to the total entropy production, which has been proposed as a measure of the importance of elementary reactions and used for the reduction of detailed chemical reaction mechanisms. The reduction method is extended for the cases where the principle of detailed balance does not hold or apply, namely in the case of irreversible reactions or when the reverse rate constants are not computed via the thermodynamic equilibrium constants. Using a mechanism for n-butane consisting exclusively of reversible reactions, the new formulation is compared to the original one, and then applied for the construction of a skeletal mechanism for n-dodecane starting from a detailed mechanism which includes predominantly irreversible reactions. The skeletal scheme is found to accurately capture the ignition delay times over an extended range of pressure, initial temperature and equivalence ratio, the steady-state temperature as function of the residence time in a non-isothermal adiabatic perfectly stirred reactor, and the laminar flame speed of atmospheric flames at different unburned mixture temperatures and equivalence ratios. 相似文献
13.
14.
Layal Hakim Guilhem Lacaze Mohammad Khalil Khachik Sargsyan Habib Najm Joseph Oefelein 《Combustion Theory and Modelling》2018,22(3):446-466
This paper demonstrates the development of a simple chemical kinetics model designed for autoignition of n-dodecane in air using Bayesian inference with a model-error representation. The model error, i.e. intrinsic discrepancy from a high-fidelity benchmark model, is represented by allowing additional variability in selected parameters. Subsequently, we quantify predictive uncertainties in the results of autoignition simulations of homogeneous reactors at realistic diesel engine conditions. We demonstrate that these predictive error bars capture model error as well. The uncertainty propagation is performed using non-intrusive spectral projection that can also be used in principle with larger scale computations, such as large eddy simulation. While the present calibration is performed to match a skeletal mechanism, it can be done with equal success using experimental data only (e.g. shock-tube measurements). Since our method captures the error associated with structural model simplifications, we believe that the optimised model could then lead to better qualified predictions of autoignition delay time in high-fidelity large eddy simulations than the existing detailed mechanisms. This methodology provides a way to reduce the cost of reaction kinetics in simulations systematically, while quantifying the accuracy of predictions of important target quantities. 相似文献