首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2288篇
  免费   281篇
  国内免费   135篇
化学   1581篇
晶体学   3篇
力学   178篇
综合类   47篇
数学   225篇
物理学   670篇
  2024年   8篇
  2023年   44篇
  2022年   154篇
  2021年   155篇
  2020年   121篇
  2019年   105篇
  2018年   59篇
  2017年   96篇
  2016年   120篇
  2015年   111篇
  2014年   132篇
  2013年   153篇
  2012年   105篇
  2011年   125篇
  2010年   118篇
  2009年   129篇
  2008年   103篇
  2007年   105篇
  2006年   129篇
  2005年   110篇
  2004年   93篇
  2003年   84篇
  2002年   59篇
  2001年   46篇
  2000年   51篇
  1999年   34篇
  1998年   24篇
  1997年   21篇
  1996年   17篇
  1995年   13篇
  1994年   12篇
  1993年   13篇
  1992年   11篇
  1991年   2篇
  1990年   6篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有2704条查询结果,搜索用时 15 毫秒
41.
A fast multi‐residue screening method for determining pesticides in tea is described. Pesticides are extracted from tea with acetone and methylene chloride, then enriched and cleaned up with solid phase extraction (SPE) prior to gas chromatographic determination. The fast screening is achieved by a gas chromatograph system equipped with dual‐column, dual‐tower auto‐sampler and both electron capture detector (ECD) and flame photometric detector (FPD). Optimal conditions are investigated for the prospective pesticides including column selection, detection mode, the retention behaviors, quantitative calibration, as well as the recoveries and repeatability of pesticides from tea samples. Under the optimal conditions, with the FPD‐P detector accompanied CP‐SIL 13CB column, 48 pesticides can be separated well and detected within 38 min; and with a DB‐5 column, 35 ECD‐detectable pesticides can be separated and detected within 46 min. The recoveries of 84 pesticides in tea samples are 65–120% with 0.34–16% RSD for spiking 0.02–3.0 mg/kg standard species. Because of the thermal instability of most pesticides, direct cold extraction of pesticides from a tea sample is recommended. The proposed method provided a very fast and efficient procedure to screen 84 pesticides from a complicated tea sample matrix.  相似文献   
42.
A detailed approach is described for the vibrational spectroscopic encoding of polystyrene-based resin beads by converting the infrared absorption peaks suitable for encoding (encoding peaks) into barcodes. Based on combining the FT-IR measurements and the quantum-chemical computations, the vibrational characteristics of p-tert-butylstyrene monomer, polystyrene and poly(p-tert-butylstyrene) resin beads are analyzed, which are helpful for the selection of encoding peaks. The vibrational spectroscopic encoding of polystyrene-based resin beads could be obtained by converting the wavenumber, intensity and full width at half maximum (FWHM) of the encoding peaks into barcodes automatically through a computer program designed in our laboratory.  相似文献   
43.
Summary A new method is presented for computer-aided ligand design by combinatorial selection of fragments that bind favorably to a macromolecular target of known three-dimensional structure. Firstly, the multiple-copy simultaneous-search procedure (MCSS) is used to exhaustively search for optimal positions and orientations of functional groups on the surface of the macromolecule (enzyme or receptor fragment). The MCSS minima are then sorted according to an approximated binding free energy, whose solvation component is expressed as a sum of separate electrostatic and nonpolar contributions. The electrostatic solvation energy is calculated by the numerical solution of the linearized Poisson-Boltzmann equation, while the nonpolar contribution to the binding free energy is assumed to be proportional to the loss in solvent-accessible surface area. The program developed for computational combinatorial ligand design (CCLD) allows the fast and automatic generation of a multitude of highly diverse compounds, by connecting in a combinatorial fashion the functional groups in their minimized positions. The fragments are linked as two atoms may be either fused, or connected by a covalent bond or a small linker unit. To avoid the combinatorial explosion problem, pruning of the growing ligand is performed according to the average value of the approximated binding free energy of its fragments. The method is illustrated here by constructing candidate ligands for the active site of human -thrombin. The MCSS minima with favorable binding free energy reproduce the interaction patterns of known inhibitors. Starting from these fragments, CCLD generates a set of compounds that are closely related to high-affinity thrombin inhibitors. In addition, putative ligands with novel binding motifs are suggested. Probable implications of the MCSS-CCLD approach for the evolving scenario of drug discovery are discussed.  相似文献   
44.
Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer’s disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from 23 structural groups were selected. The stability of the complexes was estimated via 1 μs molecular dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.  相似文献   
45.
Antimicrobial resistance (AMR) poses a serious threat to our society from both the medical and economic point of view, while the antibiotic discovery pipeline has been dwindling over the last decades. Targeting non-essential bacterial pathways, such as those leading to antibiotic persistence, a bacterial bet-hedging strategy, will lead to new molecular entities displaying low selective pressure, thereby reducing the insurgence of AMR. Here, we describe a way to target (p)ppGpp (guanosine tetra- or penta-phosphate) signaling, a non-essential pathway involved in the formation of persisters, with a structure-based approach. A superfamily of enzymes called RSH (RelA/SpoT Homolog) regulates the intracellular levels of this alarmone. We virtually screened several fragment libraries against the (p)ppGpp synthetase domain of our RSH chosen model RelSeq, selected three main chemotypes, and measured their interaction with RelSeq by thermal shift assay and STD-NMR. Most of the tested fragments are selective for the synthetase domain, allowing us to select the aminobenzoic acid scaffold as a hit for lead development.  相似文献   
46.
Enzymes that degrade pectin are called pectinases. Pectinases of microbial origin are used in juice clarification as the process is cost-effective. This study screened a pectinase-producing bacterium isolated from soil and identified as Bacillus subtilis 15A B-92 based on the 16S rRNA molecular technique. The purified pectinase from the isolate showed 99.6 U/mg specific activity and 11.6-fold purity. The molecular weight of the purified bacterial pectinase was 14.41 ± 1 kD. Optimum pectinase activity was found at pH 4.5 and 50 °C, and the enzyme was 100% stable for 3.5 h in these conditions. No enzymatic inhibition or activation effect was seen with Fe2+, Ca2+, or Mg2+. However, a slight inhibition was seen with Cu2+, Mn2+, and Zn2+. Tween 20 and 80 slightly inhibited the pectinase, whereas iodoacetic acid (IAA), ethylenediaminetetraacetate (EDTA), urea, and sodium dodecyl sulfate (SDS) showed potent inhibition. The bacterial pectinase degraded citrus pectin (100%); however, it was inactive in the presence of galactose. With citrus pectin as the substrate, the Km and Vmax were calculated as 1.72 mg/mL and 1609 U/g, respectively. The high affinity of pectinase for its substrate makes the process cost-effective when utilized in food industries. The obtained pectinase was able to clarify orange and apple juices, justifying its application in the food industry.  相似文献   
47.
Human dihydroorotate dehydrogenase (hDHODH) is an enzyme belonging to a flavin mononucleotide (FMN)-dependent family involved in de novo pyrimidine biosynthesis, a key biological pathway for highly proliferating cancer cells and pathogens. In fact, hDHODH proved to be a promising therapeutic target for the treatment of acute myelogenous leukemia, multiple myeloma, and viral and bacterial infections; therefore, the identification of novel hDHODH ligands represents a hot topic in medicinal chemistry. In this work, we reported a virtual screening study for the identification of new promising hDHODH inhibitors. A pharmacophore-based approach combined with a consensus docking analysis and molecular dynamics simulations was applied to screen a large database of commercial compounds. The whole virtual screening protocol allowed for the identification of a novel compound that is endowed with promising inhibitory activity against hDHODH and is structurally different from known ligands. These results validated the reliability of the in silico workflow and provided a valuable starting point for hit-to-lead and future lead optimization studies aimed at the development of new potent hDHODH inhibitors.  相似文献   
48.
Necroptosis has emerged as an exciting target in oncological, inflammatory, neurodegenerative, and autoimmune diseases, in addition to acute ischemic injuries. It is known to play a role in innate immune response, as well as in antiviral cellular response. Here we devised a concerted in silico and experimental framework to identify novel RIPK1 inhibitors, a key necroptosis factor. We propose the first in silico model for the prediction of new RIPK1 inhibitor scaffolds by combining docking and machine learning methodologies. Through the data analysis of patterns in docking results, we derived two rules, where rule #1 consisted of a four-residue signature filter, and rule #2 consisted of a six-residue similarity filter based on docking calculations. These were used in consensus with a machine learning QSAR model from data collated from ChEMBL, the literature, in patents, and from PubChem data. The models allowed for good prediction of actives of >90, 92, and 96.4% precision, respectively. As a proof-of-concept, we selected 50 compounds from the ChemBridge database, using a consensus of both molecular docking and machine learning methods, and tested them in a phenotypic necroptosis assay and a biochemical RIPK1 inhibition assay. A total of 7 of the 47 tested compounds demonstrated around 20–25% inhibition of RIPK1’s kinase activity but, more importantly, these compounds were discovered to occupy new areas of chemical space. Although no strong actives were found, they could be candidates for further optimization, particularly because they have new scaffolds. In conclusion, this screening method may prove valuable for future screening efforts as it allows for the exploration of new areas of the chemical space in a very fast and inexpensive manner, therefore providing efficient starting points amenable to further hit-optimization campaigns.  相似文献   
49.
Influenza virus infections continue to be a significant and recurrent public health problem. Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments are being sought to reduce the burden of flu-related illness. The time-consuming development of treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of 2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in the DrugBank database. According to the calculations of MM-GBSA, tucatinib (−54.11 kcal/mol) and Promacta (−56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity than the standard drug peramivir (−49.09 kcal/mol). Molecular dynamics (MD) simulation studies showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were stable throughout the simulation period. According to ADME analysis, the hit compounds have a high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood–brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds experimentally against the influenza H7N9 virus. The investigation and validation of these potential H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings.  相似文献   
50.
梁怡萧  潘建章  方群 《色谱》2021,39(6):567-577
药物筛选是新药研发的关键步骤,创新药物的发现需要采用适当的药物作用靶点对大量化合物样品进行筛选.高通量筛选系统能够实现数千个反应同时测试和分析,大大提高了药物筛选的实验规模和效率.其中基于细胞水平的高通量药物筛选系统因为更加接近人体生理条件,成为主要的筛选模式.而目前发展成熟的高通量细胞筛选系统主要基于多孔板,存在细胞...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号