首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   203篇
  国内免费   322篇
化学   1450篇
晶体学   24篇
力学   20篇
综合类   8篇
物理学   96篇
  2024年   1篇
  2023年   17篇
  2022年   21篇
  2021年   28篇
  2020年   58篇
  2019年   49篇
  2018年   37篇
  2017年   31篇
  2016年   70篇
  2015年   65篇
  2014年   48篇
  2013年   97篇
  2012年   71篇
  2011年   51篇
  2010年   42篇
  2009年   53篇
  2008年   55篇
  2007年   63篇
  2006年   58篇
  2005年   81篇
  2004年   76篇
  2003年   76篇
  2002年   68篇
  2001年   36篇
  2000年   45篇
  1999年   36篇
  1998年   32篇
  1997年   28篇
  1996年   36篇
  1995年   38篇
  1994年   20篇
  1993年   19篇
  1992年   28篇
  1991年   10篇
  1990年   11篇
  1989年   11篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1979年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1598条查询结果,搜索用时 15 毫秒
941.
942.
One-dimensional materials exhibit fascinating properties in electrocatalytic applications but their fabrication faces the challenge of tedious and complicated operations. We have developed a bottom-up strategy to construct a 1D metal carbide catalyst (Mo2C@NC) consisting of ultrafine Mo2C nanoparticles embedded within nitrogen-doped carbon layers by simply calcining a mixture of ammonium molybdate, urea and melamine. Experimental results and thermodynamic calculations demonstrate that the retainable pyrolysis-generated self-supporting atmosphere plays a crucial role in the crystalline phase and morphology of materials. When functioned as an electrocatalyst for the hydrogen evolution reaction (HER), the achieved Mo2C@NC presents an excellent catalytic activity as well as outstanding stability. This work could shed fresh light onto the facile synthesis of effective HER catalysts with 1D nanostructure.  相似文献   
943.
Although molybdenum alkylidyne complexes such as 1 endowed with triarylsilanolate ligands are excellent catalysts for alkyne metathesis, they can encounter limitations when (multiple) protic sites are present in a given substrate and/or when forcing conditions are necessary. In such cases, a catalyst formed in situ upon mixing of the trisamidomolybenum alkylidyne complex 3 and the readily available trisilanol derivatives 8 or 11 shows significantly better performance. This two‐component system worked well for a series of model compounds comprising primary, secondary or phenolic ‐OH groups, as well as for a set of challenging (bis)propargylic substrates. Its remarkable efficiency is also evident from applications to the total syntheses of manshurolide, a highly strained sesquiterpene lactone with kinase inhibitory activity, and the structurally demanding immunosuppressive cyclodiyne ivorenolide A; in either case, the standard catalyst 1 largely failed to effect the critical macrocyclization, whereas the two‐component system was fully operative. A study directed toward the quinolizidine alkaloid lythrancepine I features yet another instructive example, in that a triyne substrate was metathesized with the help of 3 / 11 such that two of the triple bonds participated in ring closure, while the third one passed uncompromised. As a spin‐off of this project, a much improved ruthenium catalyst for the redox isomerization of propargyl alcohols to the corresponding enones was developed.  相似文献   
944.
Low‐temperature (200 K) protonation of [Mo(CO)(Cp*)H(PMe3)2] ( 1 ) by Et2O ? HBF4 gives a different result depending on a subtle solvent change: The dihydrogen complex [Mo(CO)(Cp*)(η2‐H2)(PMe3)2]+ ( 2 ) is obtained in THF, whereas the tautomeric classical dihydride [Mo(CO)(Cp*)(H)2(PMe3)2]+ ( 3 ) is the only observable product in dichloromethane. Both products were fully characterised (νCO IR; 1H, 31P, 13C NMR spectroscopies) at low temperature; they lose H2 upon warming to 230 K at approximately the same rate (ca. 10?3 s?1), with no detection of the non‐classical form in CD2Cl2, to generate [Mo(CO)(Cp*)(FBF3)(PMe3)2] ( 4 ). The latter also slowly decomposes at ambient temperature. One of the decomposition products was crystallised and identified by X‐ray crystallography as [Mo(CO)(Cp*)(FH???FBF3)(PMe3)2] ( 5 ), which features a neutral HF ligand coordinated to the transition metal through the F atom and to the BF4? anion through a hydrogen bond. The reason for the switch in relative stability between 2 and 3 was probed by DFT calculations based on the B3LYP and M05‐2X functionals, with inclusion of anion and solvent effects by the conductor‐like polarisable continuum model and by explicit consideration of the solvent molecules. Calculations at the MP4(SDQ) and CCSD(T) levels were also carried out for calibration. The calculations reveal the key role of non‐covalent anion–solvent interactions, which modulate the anion–cation interaction ultimately altering the energetic balance between the two isomeric forms.  相似文献   
945.
A DFT analysis of the epoxidation of C2H4 by H2O2 and MeOOH (as models of tert‐butylhydroperoxide, TBHP) catalyzed by [Cp*MoO2Cl] ( 1 ) in CHCl3 and by [Cp*MoO2(H2O)]+ in water is presented (Cp*=pentamethylcyclopentadienyl). The calculations were performed both in the gas phase and in solution with the use of the conductor‐like polarizable continuum model (CPCM). A low‐energy pathway has been identified, which starts with the activation of ROOH (R=H or Me) to form a hydro/alkylperoxido derivative, [Cp*MoO(OH)(OOR)Cl] or [Cp*MoO(OH)(OOR)]+ with barriers of 24.9 (26.5) and 28.7 (29.2) kcal mol?1 for H2O2 (MeOOH), respectively, in solution. The latter barrier, however, is reduced to only 1.0 (1.6) kcal mol?1 when one additional water molecule is explicitly included in the calculations. The hydro/alkylperoxido ligand in these intermediates is η2‐coordinated, with a significant interaction between the Mo center and the Oβ atom. The subsequent step is a nucleophilic attack of the ethylene molecule on the activated Oα atom, requiring 13.9 (17.8) and 16.1 (17.7) kcal mol?1 in solution, respectively. The corresponding transformation, catalyzed by the peroxido complex [Cp*MoO(O2)Cl] in CHCl3, requires higher barriers for both steps (ROOH activation: 34.3 (35.2) kcal mol?1; O atom transfer: 28.5 (30.3) kcal mol?1), which is attributed to both greater steric crowding and to the greater electron density on the metal atom.  相似文献   
946.
A new 1D compound [(H2bpe)Mo4O13](1) (bpe=trans-1,2-Di-(4-pyridyl)-ethylen) was hydrothermally synthesized and characterized. Compound 1 comprises 3D supramolecular network constructed from 1D [Mo4O13]2- anion chains and protonated bpe layers via hydrogen bonds and π-π stacking interactions. The crystal data are the following: C12H12Mo4N2O13, Monoclinic, space group P21/n, a=0.968 64(13) nm, b=1.349 68(18) nm, c=1.514 9(2) nm, β=99.766(2)°, Z=4. The inorganic chain built up from only molybdenum oxide building blocks is interesting. The luminescent property of 1 was studied. CCDC: 739954.  相似文献   
947.
948.
A novel flow-injection spectrophotometry has been developed for the determination of molybdenum(VI) at nanograms per milliliter levels. The method is based on the catalytic effect of molybdenum(VI) on the bromate oxidative coupling of p-hydrazinobenzenesulfonic acid with N-(1-naphthyl)ethylenediamine to form an azo dye (λmax = 530 nm). Chromotropic acid (4,5-dihydroxy-2,7-naphthalenedisulfonic acid) acted as an effective activator for the molybdenum(VI)-catalyzed reaction and increased the sensitivity of the method. The reaction was monitored by measuring the change in absorbance of the dye produced. The proposed method allowed the determination of molybdenum(VI) in the range 1.0-20 ng mL−1 with sample throughput of 15 h−1. The limit of detection was 0.5 ng mL−1 and a relative standard deviation for 10 ng mL−1 molybdenum(VI) (n = 10) was 2.5%. The interfering ions were eliminated by using the combination of a masking agent and on-line minicolumn packed with cation exchanger. The present method was successfully applied to the determination of molybdenum(VI) in plant foodstuffs.  相似文献   
949.
The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr6O11 and MoO2 in air. In the literature, an oxide with a composition Pr2MoO6 has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm4Mo3O16 (space group Pn-3n, Z=8), with a=11.0897(1) Å. The structure contains MoO4 tetrahedral units, with Mo-O distances of 1.788(2) Å, fully long-range ordered with PrO8 polyhedra; in fact it can be considered as a superstructure of fluorite (M8O16), containing 32 MO2 fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (af=5.5 Å) as a≈2af. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr3+-Pr4+ oxidation state. The similarity of the XRD pattern with that published for Ce2MoO6 suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce5Mo3O16.  相似文献   
950.
We present theoretical study of morphology of Fe islands grown at Mo(110) surface in submonolayer MBE mode. We utilize atomistic SOS model with bond counting, and interactions of Fe adatom up to third nearest neighbors. We performed KMC simulations for different values of adatom interactions and varying temperatures. We have found that, while for the low temperature islands are fat fractals, for the temperature 500 K islands have faceted rhombic-like shape. For the higher temperature, islands acquire a rounded shape. In order to evaluate qualitatively morphological changes, we measured average aspect ratio of islands. We calculated dependence of the average aspect ratio on the temperature, and on the strength of interactions of an adatom with neighbors.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号