首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14602篇
  免费   2210篇
  国内免费   3047篇
化学   15871篇
晶体学   177篇
力学   370篇
综合类   67篇
数学   208篇
物理学   3166篇
  2024年   55篇
  2023年   222篇
  2022年   610篇
  2021年   584篇
  2020年   867篇
  2019年   668篇
  2018年   589篇
  2017年   706篇
  2016年   921篇
  2015年   872篇
  2014年   925篇
  2013年   1539篇
  2012年   1175篇
  2011年   1206篇
  2010年   970篇
  2009年   1041篇
  2008年   977篇
  2007年   967篇
  2006年   808篇
  2005年   730篇
  2004年   673篇
  2003年   577篇
  2002年   383篇
  2001年   329篇
  2000年   239篇
  1999年   208篇
  1998年   191篇
  1997年   149篇
  1996年   123篇
  1995年   130篇
  1994年   92篇
  1993年   91篇
  1992年   44篇
  1991年   37篇
  1990年   31篇
  1989年   15篇
  1988年   19篇
  1987年   15篇
  1986年   11篇
  1985年   10篇
  1984年   11篇
  1983年   11篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   7篇
  1976年   2篇
  1975年   2篇
  1972年   4篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Hazardous 4-nitrophenol (4-NP) has created serious threats to humans and the environment; therefore, it is highly desirable to develop a facile and practical method for the monitoring of 4-NP in environment and food. Here, a fluorescence method based on modified polyethyleneimine-capped carbon dots (mPEI-CDs) was developed for sensitive and selective determination of 4-NP in water, fruit, and vegetable samples. First, highly fluorescent mPEI-CDs (quantum yield about 40.3%) were easily synthesized via a one-step hydrothermal method by using novel acetic anhydride modified polyethyleneimine (mPEI) and citric acid as precursors. Compared to the unmodified PEI-CDs, the acetic anhydride mPEI-CDs exhibited excellent fluorescent stability in a wider pH range of 4.0–9.0. Under pH 8.0, a selective determination of 4-NP was achieved based on the inner filter effect (IFE) mechanism. After optimization, good linear relationships between fluorescence intensity function (F0-F)/F0 and the concentration of 4-NP were obtained in ranges of 0.5–10 and 10–100 μM, respectively, while efficiently avoiding the interferences from two other nitrophenol isomers, possible coexisting metal cations and anions in samples. Finally, the proposed approach was successfully applied for the determination of 4-NP in water, honey, strawberry, and tomato samples.  相似文献   
172.
A new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non-linear optical properties of those ribbons.  相似文献   
173.
Bottom-up synthesis of π-extended macrocyclic carbon rings is promising for constructing length- and diameter-specific carbon nanotubes (CNTs). However, it is still a great challenge to realize size-controllable giant carbon macrocycles. Herein, a tunable synthesis of curved nanographene-based giant π-extended macrocyclic rings (CHBC[n]s; n=8, 6, 4), as finite models of armchair CNTs, is reported. Among them, CHBC[8] contains 336 all-carbon atoms and is the largest cyclic conjugated molecular CNT segment ever reported. CHBC[n]s were systematically characterized by various spectroscopic methods and applied in photoelectrochemical cells for the first time. This revealed that the proton chemical shifts, fluorescence, and electronic and photoelectrical properties of CHBC[n]s are highly dependent on the macrocycle diameter. The tunable bottom-up synthesis of giant macrocyclic rings could pave the way towards large π-extended diameter- and chirality-specific CNT segments.  相似文献   
174.
A new chromium(III) complex, bearing a bis-thioether-diphenolate [OSSO]-type ligand, was found to be an efficient catalyst in the copolymerization of CO2 and epoxides to achieve poly(propylene carbonate), poly(cyclohexene carbonate), poly(hexene carbonate) and poly(styrene carbonate), as well as poly(propylene carbonate)(cyclohexene carbonate) and poly(propylene carbonate)(hexene carbonate) terpolymers.  相似文献   
175.
Cyclic peptides with disc-shaped structures have emerged as potent building blocks for the preparation of new biomaterials in fields ranging from biological to material science. In this work, we analyze in depth the self-assembling properties of a new type of cyclic peptides based on the alternation of α-residues and cyclic δ-amino acids (α,δ-CPs). To examine the preferred stacking properties adopted by cyclic peptides bearing this type of amino acids, we carried out a synergistic in vitro/in silico approximation by using simple dimeric models and then extended to nanotubes. Although these new cyclic peptides (α,δ-CPs) can interact either in a parallel or antiparallel fashion, our results confirm that although the parallel β-sheet is more stable, it can be switched to the antiparallel stacking by choosing residues that can establish favorable cross-strand interactions. Moreover, the subsequent comparison by using the same methodology but applied to α,γ-CPs models, up to the moment assumed as antiparallel-like d,l -α-CPs, led to unforeseen conclusions that put into question preliminary conjectures about these systems. Surprisingly, they tend to adopt a parallel β-sheet directed by the skeleton interactions. These results imply a change of paradigm with respect to cyclic peptide designs that should be considered for dimers and nanotubes.  相似文献   
176.
The Fe-based transition metal oxides are promising anode candidates for lithium storage considering their high specific capacity, low cost, and environmental compatibility. However, the poor electron/ion conductivity and significant volume stress limit their cycle and rate performances. Furthermore, the phenomena of capacity rise and sudden decay for α-Fe2O3 have appeared in most reports. Here, a uniform micro/nano α-Fe2O3 nanoaggregate conformably enclosed in an ultrathin N-doped carbon network (denoted as M/N-α-Fe2O3@NC) is designed. The M/N porous balls combine the merits of secondary nanoparticles to shorten the Li+ transportation pathways as well as alleviating volume expansion, and primary microballs to stabilize the electrode/electrolyte interface. Furthermore, the ultrathin carbon shell favors fast electron transfer and protects the electrode from electrolyte corrosion. Therefore, the M/N-α-Fe2O3@NC electrode delivers an excellent reversible capacity of 901 mA h g−1 with capacity retention up to 94.0 % after 200 cycles at 0.2 A g−1. Notably, the capacity rise does not happen during cycling. Moreover, the lithium storage mechanism is elucidated by ex situ XRD and HRTEM experiments. It is verified that the reversible phase transformation of α↔γ occurs during the first cycle, whereas only the α-Fe2O3 phase is reversibly transformed during subsequent cycles. This study offers a simple and scalable strategy for the practical application of high-performance Fe2O3 electrodes.  相似文献   
177.
The successful commercialization of promising silicon-based anode materials has been hampered by their poor cycling stability caused by the huge volume change. Integration of the carbon matrix with silicon-based (C/Si-based) anode materials has been demonstrated to be a powerful solution to achieve satisfactory electrochemical performance. This minireview aims to outline recent developments on C/Si-based composites, with the emphasis on the importance of carbon distribution at multiple scales. In addition, the forms of the carbon framework (carbon sources and doping of heteroatoms) have been summarized. Particularly, a novel C/Si-based hybrid with carbon distributed at the atomic scale has been highlighted.  相似文献   
178.
The development of carbon nanobelts and related belt-shaped polycyclic aromatic hydrocarbons has gained momentum in recent years. This Minireview focuses on the synthetic strategies used in constructing these aesthetically appealing molecular nanocarbons. Examples of carbon nanobelts and related belt-shaped polycyclic aromatic hydrocarbons reported in recent years as well as some representative synthetic attempts in earlier times are discussed.  相似文献   
179.
Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 μWh cm−2 with power density of 14.1 mW cm−2 (156.7 mW cm−3) at 1.4 V.  相似文献   
180.
Relatively cheap or at no cost, easily available, renewable agricultural waste has been given a new purpose. Using coconut shells as the raw material, and being obtained from agricultural, industry by-products, or even waste materials were used as carbon resource. Acid etching coconut shells carbon (AC) rendered micro/nanoscale hierarchical structures and made the surface available for further modification. Then, the surface of acidified coconut shell carbon was engineered via mussel inspired chemistry. The polydopamine functionalized AC composites (AC-PDA) were applied for efficient removal of methylene blue (MB) dye. Further, the surface morphology, and chemical structure were evaluated by means of scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). Through the combination of acid etching and mussel inspired chemistry, organic functional groups can be successfully introduced onto the surface of the coconut shells carbon. The improvement of adsorption capacity of AC-PDA compared with AC is probably due to the increased number of active binding sites resulting from surface modification and formation of new functional groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号