首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14710篇
  免费   2595篇
  国内免费   2144篇
化学   14953篇
晶体学   179篇
力学   273篇
综合类   77篇
数学   104篇
物理学   3863篇
  2024年   45篇
  2023年   169篇
  2022年   685篇
  2021年   763篇
  2020年   816篇
  2019年   612篇
  2018年   490篇
  2017年   515篇
  2016年   756篇
  2015年   675篇
  2014年   748篇
  2013年   1366篇
  2012年   929篇
  2011年   801篇
  2010年   720篇
  2009年   793篇
  2008年   860篇
  2007年   909篇
  2006年   835篇
  2005年   765篇
  2004年   754篇
  2003年   702篇
  2002年   488篇
  2001年   434篇
  2000年   436篇
  1999年   399篇
  1998年   364篇
  1997年   269篇
  1996年   225篇
  1995年   225篇
  1994年   188篇
  1993年   118篇
  1992年   123篇
  1991年   65篇
  1990年   50篇
  1989年   61篇
  1988年   43篇
  1987年   33篇
  1986年   33篇
  1985年   41篇
  1984年   25篇
  1983年   8篇
  1982年   12篇
  1981年   22篇
  1980年   22篇
  1979年   12篇
  1978年   9篇
  1977年   8篇
  1976年   6篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 812 毫秒
951.
The first principle computational screening was performed to investigate the effect of selected dopants for Li3PS4 sulfide solid electrolyte on its ionic conductivity and stability toward moisture. The results suggest that substitution P5+ using isovalent cations whose electronegativity (EN) value is closer to the value of S has more significant effects on the ionic conductivity, whereby W5+ and Sb5+ can improve most. Similarly, aliovalent cation substitutions with compensating changes in the lithium-ion concentration, particularly those with a lower oxidation state and higher EN, such as Cu2+, effectively enhance the lithium-ion conductivity in this structure. For cation dopants, it is found that ionic conductivity improvement of Li3PS4 is the synergetic effect of EN and oxidation number of the dopant as well as the material's lattice parameter change. Oxides of the considered cation dopants can also improve the ionic conductivity of the material but have much lower lithium-ion conductivity than the cases of cation dopants. However, the metal oxide dopants, particularly those derived from soft Lewis' acid cations, show a marginal improvement in moisture stability of the Li3PS4 electrolyte. The effect of halides and metal halide dopants on the lithium-ion conductivity and moisture stability of Li3PS4 electrolyte are also studied. It is found that metal halides are more effective than any other dopants in improving the ionic conductivity of Li3PS4.  相似文献   
952.
Heterocyclic fused-ring systems are of utmost importance because of their presence in many natural products with biological activity. Pyrroloindoles are tricyclic heterocycles that are present in various bioactive and medicinally valuable compounds. Herein, we report the synthesis of phenylene-bridged bis-pyrrolo[1,2-a]indole crowned macrocycles 1 – 3 in which the pyrrolo[1,2-a]indole moieties were formed via intramolecular fusion. The macrocycles were thoroughly characterized by 1D and 2D NMR, HRMS and X-ray crystallographic studies. The X-ray structure revealed that the two pyrrolo[1,2-a]indole moieties were parallel to each other, and one pyrrolo[1,2-a]indole unit was deviated by an angle of 9.54° while the other pyrrolo[1,2-a]indole unit was deviated by an angle of 12.0° from the mean plane defined by 28 core atoms. The macrocycles 1 – 3 absorb in the visible region and readily undergo oxidations because of their electron rich nature. The macrocycles 1 – 3 upon treatment with trifluoroacetic acid (TFA) generates the corresponding cation radicals 1 – 3 .+ which were stable in the open air for a week. The cation radicals 1 – 3 .+ absorb strongly in the NIR region and the experimental observations on crowned macrocycles 1 – 3 were corroborated by DFT and TD-DFT studies.  相似文献   
953.
Computational drug design is increasingly becoming important with new and unforeseen diseases like COVID-19. In this study, we present a new computational de novo drug design and repurposing method and applied it to find plausible drug candidates for the receptor binding domain (RBD) of SARS-CoV-2 (COVID-19). Our study comprises three steps: atom-by-atom generation of new molecules around a receptor, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom, explicit-water well-tempered metadynamics free energy calculations. By choosing the receptor binding domain of the viral spike protein, we showed that some of our new molecules and some of the repurposable drugs have stronger binding to RBD than hACE2. To validate our approach, we also calculated the free energy of hACE2 and RBD, and found it to be in an excellent agreement with experiments. These pool of drugs will allow strategic repurposing against COVID-19 for a particular prevailing conditions.  相似文献   
954.
Heparan sulfate (HS) interacts with a broad spectrum of inflammatory cytokines, thereby modulating their biological activities. It is believed that there is a structural-functional correlation between each protein and sugar sequences in the HS polysaccharides, however, the information in this regard is limited. In this study, we compared the binding of four inflammatory cytokines (CCL8, IL-1beta, IL-2 and IL-6) to immobilized heparin by an SPR analysis. To define the molecular base of the binding, we used a heparin pentasaccharide as representative structure to dock into the 3D-molecular structure of the cytokines. The results show a discrepancy in KD values obtained by SPR analysis and theoretical calculation, pointing to the importance to apply more than one method when describing affinity between proteins and HS. By cluster analysis of the complex formed between the pentasaccharide and cytokines, we have identified several groups in heparin forming strong hydrogen bonds with all four cytokines, which is a significant finding. This molecular and conformational information should be valuable for rational design of HS/heparin-mimetics to interfere cytokine-HS interactions.  相似文献   
955.
Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis’s causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.  相似文献   
956.
The areca (Areca catechu L.) nut kernel (ANK) is a good potential protein source for its high protein content of 9.89–14.62 g/100 g and a high yield of around 300,000 tons per year in China. However, utilization of the areca nut kernel is limited. To expand the usage of ANK in pharmaceutical or foods industries, areca nut kernel globulin was extracted and angiotensin-I converting enzyme (ACE) inhibition peptides were prepared and identified using gel chromatography, reversed phase HPLC separation, UPLC-ESI-MS/MS analysis and in silico screening. Finally, a novel ACE-inhibitory heptapeptide (Ala–Pro–Lys–Ile–Glu–Glu–Val) was identified and chemically synthesized. The combination pattern between APKIEEV and ACE, and the inhibition kinetics, antihypertensive effect and endothlein-1 inhibition activity of APKIEEV were studied. The results of the molecular docking demonstrated that APKIEEV could bind to four active sites (not the key active sites) of ACE via short hydrogen bonds and demonstrated high ACE-inhibitory activity (IC50: 550.41 μmol/L). Moreover, APKIEEV exhibited a significantly lowering effect on both the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats, and had considerable suppression ability on intracellular endothelin-1. These results highlight the potential usage of APKIEEV as ingredients of antihypertensive drugs or functional foods.  相似文献   
957.
African swine fever virus (ASFV) causes a highly contagious and severe hemorrhagic viral disease with high mortality in domestic pigs of all ages. Although the virus is harmless to humans, the ongoing ASFV epidemic could have severe economic consequences for global food security. Recent studies have found a few antiviral agents that can inhibit ASFV infections. However, currently, there are no vaccines or antiviral drugs. Hence, there is an urgent need to identify new drugs to treat ASFV. Based on the structural information data on the targets of ASFV, we used molecular docking and machine learning models to identify novel antiviral agents. We confirmed that compounds with high affinity present in the region of interest belonged to subsets in the chemical space using principal component analysis and k-means clustering in molecular docking studies of FDA-approved drugs. These methods predicted pentagastrin as a potential antiviral drug against ASFVs. Finally, it was also observed that the compound had an inhibitory effect on AsfvPolX activity. Results from the present study suggest that molecular docking and machine learning models can play an important role in identifying potential antiviral drugs against ASFVs.  相似文献   
958.
Digoxin is a cardiac glycoside long used to treat congestive heart failure and found recently to show antitumor potential. The hydroxy groups connected at the C-12, C-14, and C-3′a positions; the C-17 unsaturated lactone unit; the conformation of the steroid core; and the C-3 saccharide moiety have been demonstrated as being important for digoxin’s cytotoxicity and interactions with Na+/K+-ATPase. The docking profiles for digoxin and several derivatives and Na+/K+-ATPase were investigated; an additional small Asn130 side pocket was revealed, which could be useful in the design of novel digoxin-like antitumor agents. In addition, the docking scores for digoxin and its derivatives were found to correlate with their cytotoxicity, indicating a potential use of these values in the prediction of the cancer cell cytotoxicity of other cardiac glycosides. Moreover, in these docking studies, digoxin was found to bind to FIH-1 and NF-κB but not HDAC, IAP, and PI3K, suggesting that this cardiac glycoside directly targets FIH-1, Na+/K+-ATPase, and NF-κB to mediate its antitumor potential. Differentially, digoxigenin, the aglycon of digoxin, binds to HDAC and PI3K, but not FIH-1, IAP, Na+/K+-ATPase, and NF-κB, indicating that this compound may target tumor autophagy and metabolism to mediate its antitumor propensity.  相似文献   
959.
Multi‐functionalization and isomer‐purity of fullerenes are crucial tasks for the development of their chemistry in various fields. In both current main approaches—tether‐directed covalent functionalization and supramolecular masks—the control of regioselectivity requires multi‐step synthetic procedures to prepare the desired tether or mask. Herein, we describe light‐responsive tethers, containing an azobenzene photoswitch and two malonate groups, in the double cyclopropanation of [60]fullerene. The formation of the bis‐adducts and their spectroscopic and photochemical properties, as well as the effect of azobenzene photoswitching on the regiochemistry of the bis‐addition, have been studied. The behavior of the tethers depends on the geometry of the connection between the photoactive core and the malonate moieties. One tether lead to a strikingly different adduct distribution for the E and Z isomers, indicating that the covalent bis‐functionalization of C60 can be controlled by light.  相似文献   
960.
Cube-like double four-ring (d4r) cages are among the most frequent building units of zeolites and zeotypes. In materials synthesised in fluoride-containing media, the fluoride anions are preferentially incorporated in these cages. In order to study the impact of framework composition and organic structure-directing agents (OSDAs) on the possible occurrence of local distortions of fluoride-containing d4r cages, density functional theory (DFT) calculations and DFT-based molecular dynamics simulations were performed for AST-type zeotypes, considering four different compositions (SiO2, GeO2, AlPO4, GaPO4) and two different OSDA cations (tetramethylammonium [TMA] and quinuclidinium [QNU]). All systems except SiO2-AST show significant deformations, with a pyritohedron-like distortion of the d4r cages occurring in GeO2- and GaPO4-AST, and a displacement of the fluoride anions towards one of the corners of the cage in AlPO4- and GaPO4-AST. While the distortions occur at random in TMA-containing zeotypes, they exhibit a preferential orientation in systems that incorporate QNU cations. In addition to providing detailed understanding of the local structure of a complex host-guest system on the picosecond timescale, this work indicates the possibility to stabilise ordered distortions through a judicious choice of the OSDA, which might enable a tuning of the material's properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号