全文获取类型
收费全文 | 16673篇 |
免费 | 2502篇 |
国内免费 | 2315篇 |
专业分类
化学 | 15598篇 |
晶体学 | 194篇 |
力学 | 543篇 |
综合类 | 107篇 |
数学 | 877篇 |
物理学 | 4171篇 |
出版年
2024年 | 63篇 |
2023年 | 233篇 |
2022年 | 938篇 |
2021年 | 814篇 |
2020年 | 874篇 |
2019年 | 670篇 |
2018年 | 541篇 |
2017年 | 563篇 |
2016年 | 812篇 |
2015年 | 746篇 |
2014年 | 827篇 |
2013年 | 1472篇 |
2012年 | 986篇 |
2011年 | 891篇 |
2010年 | 788篇 |
2009年 | 883篇 |
2008年 | 962篇 |
2007年 | 992篇 |
2006年 | 915篇 |
2005年 | 823篇 |
2004年 | 820篇 |
2003年 | 758篇 |
2002年 | 537篇 |
2001年 | 470篇 |
2000年 | 487篇 |
1999年 | 438篇 |
1998年 | 408篇 |
1997年 | 301篇 |
1996年 | 250篇 |
1995年 | 237篇 |
1994年 | 198篇 |
1993年 | 125篇 |
1992年 | 132篇 |
1991年 | 70篇 |
1990年 | 57篇 |
1989年 | 70篇 |
1988年 | 47篇 |
1987年 | 35篇 |
1986年 | 35篇 |
1985年 | 48篇 |
1984年 | 33篇 |
1983年 | 10篇 |
1982年 | 16篇 |
1981年 | 27篇 |
1980年 | 26篇 |
1979年 | 12篇 |
1978年 | 9篇 |
1977年 | 9篇 |
1976年 | 6篇 |
1975年 | 11篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Asaad Khalid Mohnad Abdalla Maria Saeed Muhammad Nabeel Ghayur Surya Kant Kalauni Mohammed Albratty Hassan A. Alhazmi Mohammed Ahmed Mesaik Anwarul Hassan Gilani Zaheer Ul-Haq 《Molecules (Basel, Switzerland)》2022,27(11)
Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer’s disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases—AChE and butyrylcholinesterase (BChE)—noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker. 相似文献
62.
Wei Zhu Fengming Wu Jindie Hu Wenjing Wang Jifeng Zhang Guoqing Guo 《Molecules (Basel, Switzerland)》2022,27(11)
Chlorogenic acid (CGA), an important metabolite in natural plant medicines such as honeysuckle and eucommia, has been shown to have potent antinociceptive effects. Nevertheless, the mechanism by which CGA relieves chronic pain remains unclear. α-amino-3-hydroxy-5-methyl-4-isooxazolpropionic acid receptor (AMPAR) is a major ionotropic glutamate receptor that mediates rapid excitatory synaptic transmission and its glutamate ionotropic receptor AMPA type subunit 1 (GluA1) plays a key role in nociceptive transmission. In this study, we used Western blot, surface plasmon resonance (SPR) assay, and the molecular simulation technologies to investigate the mechanism of interaction between CGA and AMPAR to relieve chronic pain. Our results indicate that the protein expression level of GluA1 showed a dependent decrease as the concentration of CGA increased (0, 50, 100, and 200 μM). The SPR assay demonstrates that CGA can directly bind to GluA1 (KD = 496 μM). Furthermore, CGA forms a stable binding interaction with GluA1, which is validated by molecular dynamics (MD) simulation. The binding free energy between CGA and GluA1 is −39.803 ± 14.772 kJ/mol, where van der Waals interaction and electrostatic interaction are the major contributors to the GluA1–CGA binding, and the key residues are identified (Val-32, Glu-33, Ala-36, Glu-37, Leu-48), which play a crucial role in the binding interaction. This study first reveals the structural basis of the stable interaction between CGA and GluA1 to form a binding complex for the relief of chronic pain. The research provides the structural basis to understand the treatment of chronic pain and is valuable to the design of novel drug molecules in the future. 相似文献
63.
With the development of metal-based drugs, Ru(II) compounds present potential applications of PDT (photodynamic therapy) and anticancer reagents. We herein synthesized two naphthyl-appended ruthenium complexes by the combination of the ligand with naphthyl and bipyridyl. The DNA affinities, photocleavage abilities, and photocytotoxicity were studied by various spectral methods, viscosity measurement, theoretical computation method, gel electrophoresis, and MTT method. Two complexes exhibited strong interaction with calf thymus DNA by intercalation. Production of singlet oxygen (1O2) led to obvious DNA photocleavage activities of two complexes under 365 nm light. Furthermore, two complexes displayed obvious photocytotoxicity and low dark cytotoxicity towards Hela, A549, and A375 cells. 相似文献
64.
65.
Tingjunhong Ni Zichao Ding Fei Xie Yumeng Hao Junhe Bao Jingxiang Zhang Shichong Yu Yuanying Jiang Dazhi Zhang 《Molecules (Basel, Switzerland)》2022,27(11)
A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, compounds 5k and 6c showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625 μg/mL), C. neoformans (MIC = 0.125, 0.0625 μg/mL), and A. fumigatus (MIC = 8.0, 4.0 μg/mL). Compound 6c also exerted superior activity to compound 5k and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that 6c could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that compound 6c deserves further investigation. 相似文献
66.
Mufarreh Asmari Muhammad Waqas Adel Ehab Ibrahim Sobia Ahsan Halim Ajmal Khan Ahmed Al-Harrasi Hermann Wtzig Sami El Deeb 《Molecules (Basel, Switzerland)》2022,27(14)
The microscale thermophoresis (MST) technique was utilized to investigate lactoferrin–drug interaction with the iron chelator, deferiprone, using label-free system. MST depends on the intrinsic fluorescence of one interacting partner. The results indicated a significant interaction between lactoferrin and deferiprone. The estimated binding constant for the lactoferrin–deferiprone interaction was 8.9 × 10−6 ± 1.6, SD, which is to be reported for the first time. Such significant binding between lactoferrin and deferiprone may indicate the potentiation of the drug secretion into a lactating mother’s milk. The technique showed a fast and simple approach to study protein–drug interaction while avoiding complicated labeling procedures. Moreover, the binding behavior of deferiprone within the binding sites of lactoferrin was investigated through molecular docking which reflected that deferiprone mediates strong hydrogen bonding with ARG121 and ASP297 in pocket 1 and forms H-bond and ionic interaction with ASN640 and ASP395, respectively, in pocket 2 of lactoferrin. Meanwhile, iron ions provide ionic interaction with deferiprone in both of the pockets. The molecular dynamic simulation further confirmed that the binding of deferiprone with lactoferrin brings conformational changes in lactoferrin that is more energetically stable. It also confirmed that deferiprone causes positive correlation motion in the interacting residues of both pockets, with strong negative correlation motion in the loop regions, and thus changes the dynamics of lactoferrin. The MM-GBSA based binding free energy calculation revealed that deferiprone exhibits ∆G TOTAL of −63,163 kcal/mol in pocket 1 and −63,073 kcal/mol in pocket 2 with complex receptor–ligand difference in pocket 1 and pocket 2 of −117.38 kcal/mol and −111.54 kcal/mol, respectively, which in turn suggests that deferiprone binds more strongly in the pocket 1. The free energy landscape of the lactoferrin–deferiprone complex also showed that this complex remains in a high energy state that confirms the strong binding of deferiprone with the lactoferrin. The current research concluded that iron-chelating drugs (deferiprone) can be transported from the mother to the infant in the milk because of the strong attachment with the lactoferrin active pockets. 相似文献
67.
Xiangyu Cui Wenbo Wang Mengcheng Du Delong Ma Xiaolai Zhang 《Molecules (Basel, Switzerland)》2022,27(14)
Soluble sulfur (S8) and insoluble sulfur (IS) have different application fields, and molecular dynamics simulation can reveal their differences in solubility in solvents. It is found that in the simulated carbon disulfide (CS2) solvent, soluble sulfur in the form of clusters mainly promotes the dissolution of clusters through van der Waals interaction between solvent molecules (CS2) and S8, and the solubility gradually increases with the increase in temperature. However, the strong interaction between polymer chains of insoluble sulfur in the form of polymer hinders the diffusion of IS into CS2 solvent, which is not conducive to high-temperature dissolution. The simulated solubility parameter shows that the solubility parameter of soluble sulfur is closer to that of the solvent, which is consistent with the above explanation that soluble sulfur is easy to dissolve. 相似文献
68.
Eugeny Nikolaevich Zapolotsky Sergey Pavlovich Babailov Gennadiy Alexandrovich Kostin 《Molecules (Basel, Switzerland)》2022,27(14)
1H NMR measurements are reported for the CD2Cl2/CDCl3 solutions of the Co(II) calix[4]arenetetraphosphineoxide complex (I). Temperature dependences of the 1H NMR spectra of I have been analyzed using the line shape analysis, taking into account the temperature variation of paramagnetic chemical shifts, within the frame of the dynamic NMR method. Conformational dynamics of the 2:1 Co(II) calix[4]arene complexes was conditioned by the pinched cone ↔pinched cone interconversion of I (with activation Gibbs energy ΔG≠(298K) = 40 ± 3 kJ/mol. Due to substantial temperature dependence of paramagnetic shifts, complex I can be used as model compound for designing an NMR thermosensor reagent for local temperature monitoring. 相似文献
69.
Eslam B. Elkaeed Reda G. Yousef Hazem Elkady Ibraheem M. M. Gobaara Bshra A. Alsfouk Dalal Z. Husein Ibrahim M. Ibrahim Ahmed M. Metwaly Ibrahim H. Eissa 《Molecules (Basel, Switzerland)》2022,27(14)
A nicotinamide-based derivative was designed as an antiproliferative VEGFR-2 inhibitor with the key pharmacophoric features needed to interact with the VEGFR-2 catalytic pocket. The ability of the designed congener ((E)-N-(4-(1-(2-(4-benzamidobenzoyl)hydrazono)ethyl)phenyl)nicotinamide), compound 10, to bind with the VEGFR-2 enzyme was demonstrated by molecular docking studies. Furthermore, six various MD simulations studies established the excellent binding of compound 10 with VEGFR-2 over 100 ns, exhibiting optimum dynamics. MM-GBSA confirmed the proper binding with a total exact binding energy of −38.36 Kcal/Mol. MM-GBSA studies also revealed the crucial amino acids in the binding through the free binding energy decomposition and declared the interactions variation of compound 10 inside VEGFR-2 via the Protein–Ligand Interaction Profiler (PLIP). Being new, its molecular structure was optimized by DFT. The DFT studies also confirmed the binding mode of compound 10 with the VEGFR-2. ADMET (in silico) profiling indicated the examined compound’s acceptable range of drug-likeness. The designed compound was synthesized through the condensation of N-(4-(hydrazinecarbonyl)phenyl)benzamide with N-(4-acetylphenyl)nicotinamide, where the carbonyl group has been replaced by an imine group. The in-vitro studies were consonant with the obtained in silico results as compound 10 prohibited VEGFR-2 with an IC50 value of 51 nM. Compound 10 also showed antiproliferative effects against MCF-7 and HCT 116 cancer cell lines with IC50 values of 8.25 and 6.48 μM, revealing magnificent selectivity indexes of 12.89 and 16.41, respectively. 相似文献
70.
Influenza virus infections continue to be a significant and recurrent public health problem. Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments are being sought to reduce the burden of flu-related illness. The time-consuming development of treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of 2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in the DrugBank database. According to the calculations of MM-GBSA, tucatinib (−54.11 kcal/mol) and Promacta (−56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity than the standard drug peramivir (−49.09 kcal/mol). Molecular dynamics (MD) simulation studies showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were stable throughout the simulation period. According to ADME analysis, the hit compounds have a high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood–brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds experimentally against the influenza H7N9 virus. The investigation and validation of these potential H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings. 相似文献