首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   7篇
  国内免费   28篇
化学   366篇
晶体学   1篇
力学   7篇
物理学   29篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   10篇
  2015年   7篇
  2014年   11篇
  2013年   34篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   14篇
  2008年   11篇
  2007年   14篇
  2006年   14篇
  2005年   12篇
  2004年   23篇
  2003年   25篇
  2002年   19篇
  2001年   22篇
  2000年   24篇
  1999年   15篇
  1998年   13篇
  1997年   20篇
  1996年   14篇
  1995年   19篇
  1994年   14篇
  1993年   13篇
  1992年   8篇
  1991年   5篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1979年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
61.
62.
Blends of poly(acrylic acid) (PAA) and poly(p‐vinylphenol) (PVPh) were prepared from N,N‐dimethylformamide (DMF) and ethanol solutions. The DMF‐cast blends exhibited single Tg's, as shown by modulated differential scanning calorimetry, whereas the ethanol‐cast blends had double Tg's. Fourier transform infrared spectroscopy showed that there was a specific interaction between PAA and PVPh in the DMF‐cast blends. The single‐Tg blends cast from DMF showed single‐exponential decay behavior for the proton spin–lattice relaxation in both the laboratory frame and the rotating frame, indicating that the two polymers mixed intimately on a scale of 2–3 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 789–796, 2003  相似文献   
63.
The miscibility of crystalline syndiotactic polystyrene (SPS)/non-crystalline atactic polystyrene (APS) blend was estimated by the crystallization dynamics method, which evaluated the nucleation rate, the crystal growth rate and the surface free energy parameter. The melting temperature depression suggested that SPS/APS blends were the miscible system but not in molecular level. The relationship between the blend content and the chemical potential difference evaluated at a constant crystal growth rate showed a good linear relationship. These facts suggested that SPS/APS blends contained the concentration fluctuation with the size between few nm to less than 80 nm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
64.
A truly miscible ternary miscible blend consisting of poly(?‐caprolactone) (PCL), poly(phenyl methacrylate), and poly(benzyl methacrylate) (PBzMA) was discovered. The three‐polymer blend system was completely miscible within the entire composition range at ambient temperature up to about 150 °C, and ternary phase diagrams at increasing temperatures were characterized and interpreted. A ternary‐interaction model based on the modified Flory–Huggins expression was used to describe the phase diagrams with the individual binary interaction strengths. The model fitted well with the experimental‐phase diagram for the ternary blend system at T = 250 °C, where the binary PCL‐PBzMA blend system is on the critical points of phase separation. Interpretation of discrepancy between the model and experimental at other temperatures was handled with an empirical approach. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 747–754, 2002  相似文献   
65.
Densities of phases co-existing in molten ionic systems with partial miscibility out of halides of alkali metals (KBr, KI, RbBr, RbI, CsCl, CsBr, CsI) with lithium fluoride are determined in a broad temperature interval by a method of hydrostatic weighing. A linear decrease in the difference between phase densities with increasing temperature is found for all systems. By studying a molten KBr-LiF mixture, this regularity is traced up to a critical miscibility point. The critical index of the order parameter, calculated from these data happens to equal 1/2 and coincide with results predicted by mid-field theory.  相似文献   
66.
This article presents a model for the permeation of solvent mixtures through an elastomer in the particular case of pervaporation. An analytical expression for each solvent permeation rate is derived, in the limited case of a membrane that undergoes small swelling, without making any assumptions on the solvent diffusion coefficients and their dependence on solvent concentrations. Applying this analytical expression to different situations, we fitted most of the curves previously published on pervaporation experiments. In particular, we correlated the synergy developed by a mixture of two solvents in the permeation process with the sign of their Flory–Huggins interaction parameter χAB. This explains why, in most cases (χAB > 0), a molecule permeating easily through a membrane is mixed with a molecule permeating much less easily; the latter can see its permeation flux increase by a factor 10 or 100 because the swelling of the polymer induced by the more permeable molecule “opens the meshes of the network” allowing the less permeable molecule to pass through more easily. Within our analysis, the efficiency of the pervaporation process, expressed through the separation factor, is derived very simply as a function of the interaction coefficients and the viscosities of solvents and exhibits an exponential dependence on the volume fraction of either component as seen in most experiments. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 183–193, 2003  相似文献   
67.
68.
The article discusses the influence of an oligomeric resin, hydrogenated oligo (cyclopentadiene) (HOCP), on the morphology and properties of its blends with high density polyethylene (HDPE). HDPE/HOCP blends after solidification contain three phases: the crystalline phase of HDPE and two amorphous phases, one rich in amorphous HDPE and the other in HOCP. DSC thermograms and the loss modulus behaviors show that the γ transition is influenced by HOCP molecules and, in addition to the αc transition of HDPE, there is another transition that is attributed to the HOCP-rich phase. The hypothesis of the two amorphous phases is confirmed by the optical microscopy observations performed on isothermally crystallized blend films. © 1994 John Wiley & Sons, Inc.  相似文献   
69.
Miscibility in blends of three styrene-butadiene-styrene and one styrene-isoprene-styrene triblock copolymers containing 28%, 30%, 48%, and 14% by weight of polystyrene, respectively, with poly(vinyl methyl ether) (PVME) were investigated by FTIR spectroscopy and differential scanning calorimetry (DSC). It was found from the optical clarity and the glass transition temperature behavior that the blends show miscibility for each kind of triblock copolymers below a certain concentration of PVME. The concentration range to show miscibility becomes wider as the polystyrene content and molecular weight of PS segment in the triblock copolymers increase. From the FTIR results, the relative peak intensity of the 1100 cm-1 region due to COCH3 band of PVME and peak position of 698 cm-1 region due to phenyl ring are sensitive to the miscibility of SBS(SIS)/PVME blends. The results show that the miscibility in SBS(SIS)/PVME blends is greatly affected by the composition of the copolymers and the polystyrene content in the triblock copolymers. Molecular weights of polystyrene segments have also affected the miscibility of the blends. ©1995 John Wiley & Sons, Inc.  相似文献   
70.
Cloud-point data to 180°C and 2800 bar are presented for polyethylene, poly(methyl acrylate), and two poly(ethylene-co-methyl acrylate) copolymers (10 and 31 mol % methyl acrylate) in propane and chlorodifluoromethane with two cosolvents, acetone and ethanol. The addition of small amounts of either cosolvent to the copolymer–solvent mixtures shifts the cloud-point curve to lower pressures and temperatures, as both cosolvents provide favorable polar interactions with the acrylate group in the backbone of the copolymer. Ethanol has a larger effect than acetone since ethanol hydrogen bonds to the acrylate group. However, if the concentration of ethanol is increased above ca. 10 wt %, it self-associates and reverts to antisolvent behavior, forcing the copolymer out of solution. For nonpolar polyethylene–propane mixtures, the polar cosolvents behave as traditional an-tisolvents. In poly(methyl acrylate)–chlorodifluoromethane mixtures, both polar cosolvents enlarge the single-phase region. The cloud-point curves for the (co)polymer–propane–acetone mixtures are modeled reasonably well using the Sanchez–Lacombe equation of state with two adjustable mixture parameters. No attempt is made to model the mixtures that exhibit hydrogen bonding. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号