首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   7篇
  国内免费   28篇
化学   366篇
晶体学   1篇
力学   7篇
物理学   29篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   10篇
  2015年   7篇
  2014年   11篇
  2013年   34篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   14篇
  2008年   11篇
  2007年   14篇
  2006年   14篇
  2005年   12篇
  2004年   23篇
  2003年   25篇
  2002年   19篇
  2001年   22篇
  2000年   24篇
  1999年   15篇
  1998年   13篇
  1997年   20篇
  1996年   14篇
  1995年   19篇
  1994年   14篇
  1993年   13篇
  1992年   8篇
  1991年   5篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1979年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
51.
52.
Monolayers of three stearic acid esters, methyl-stearate, propyl-stearate and butyl-stearate, were studied at the air-water interface in the 15–35 °C temperature range.To investigate the surface phases of these esters spread at the air-water interface, some state equations were fitted with the experimental data taken from the isotherms.Surface potential measurements were carried out to obtain information on the molecular orientation. The interfacial orientation and distribution was discussed in relationship to the surface phases present.Ellipsometric measurements were made to determine the thicknesses.The two-dimensional miscibility for the mixture methyl-stearate/butyl-stearate was also studied: surface free energies, enthalpies, and entropies of mixing were computed. The results obtained confirmed previous deductions about the role of the hydrophobic chains in determining the two-dimensional miscibility when they have the same interfacial orientation.  相似文献   
53.
范忠雷  刘大壮 《应用化学》2017,34(11):1273-1278
用稀溶液粘度法研究了氯化聚丙烯与石油树脂、丙烯酸树脂和醇酸树脂间的相容性,并用α判据对相容性结果进行判别。结果显示,石油树脂/氯化聚丙烯的共混体系是相容的;丙烯酸树脂/氯化聚丙烯的共混体系是不相容的。而醇酸树脂与氯化聚丙烯的相容性情况复杂,由二者的组成决定。当m(醇酸树脂)∶m(氯化聚丙烯)1∶1时,体系是相容的;当m(醇酸树脂)∶m(氯化聚丙烯)1∶1时,体系是不相容的。通过共溶剂法和涂膜宏观特性对上述体系的相容性进行测定,所得结果与α判据的结果相符合,印证了稀溶液粘度法研究溶液中高分子间的相互作用来预测涂料树脂的相容性具有一定可行性。  相似文献   
54.
The application of solid state NMR (SS NMR) to the study of multiphase polymer systems is growing rapidly. This article aims to provide an overview of the current state of development of this field, paying particular attention to the study of hydrogen bonding in hydrogen-bonded polymer materials through SS NMR investigations. The effection of hydrogen bonds on the miscibility, phase separation and dynamic behavior of selected systems will also be discussed, based on work during the last 10 to 15 years.  相似文献   
55.
Blends of poly(2,6-dimethyl 1,4-phenylene oxide) (PPhO) with the copolymer poly(styrene-co-methacrylic acid) (PS-MAA) and the ionomer poly(styrene-co-sodium methacrylate) (PS-MAA-Na), up to 10 mol% co-unit content, were investigated by dynamic mechanical thermal measurements. The PPhO/PS-MAA-Na blends are compared with PS/PS-MAA-Na blends. The blends of PPhO with PS-MAA are no longer miscible at 10 mol% acid content; this is attributed to a copolymer effect induced by the reduction of PS-PPhO interactions due to the presence of the MAA group which does not interact favorably with PPhO. The blends of PPhO with the ionomer are already immiscible at the lowest ion content studied (2.4 mol%), but become increasingly so as ion content is increased. Despite favorable PS-PPhO interactions, these blends are only a little more miscible than the PS/PS-MAA-Na blends. This is attributed to a combination of the increasing importance of the ionomer cluster phase (from which the homopolymer chains presumably are excluded) as ion content is increased, and of a copolymer effect between the homopolymers and the unclustered phase of the ionomer. These results are compared with published data indicating that blends of PPhO with another biphasic ionomer, zinc sulfonated polystyrene, are miscible. The contrasting behavior is rationalized in part by the suggestion that the copolymer effect between PPhO and the unclustered phase of the latter ionomer, but not of the former, is absent; this is related to multiplet structure and sizes. The analysis made of the above systems is extended to predict what might be the miscibility behavior between PPhO and other PS-based ionomer and related copolymer systems. © 1993 John Wiley & Sons, Inc.  相似文献   
56.
Real‐time small‐angle X‐ray scattering (SAXS) measurement using synchrotron radiation was applied to study the lamellar structural changes in miscible crystalline polymer blends of poly(1,4‐butylene succinate) (PBSU) and poly(vinylidene fluoride) (PVDF) during melting and crystallization processes. The lamella of PBSU is either included in the interlamellar region of PVDF (interlamellar inclusion structure), or rejected from the interlamellar region of PVDF (interlamellar exclusion structure). The two lamellar structures coexists in the melt‐quenched samples of the PBSU/PVDF = 30/70 blend. Only the interlamellar exclusion structure exists in the drawn films of the PBSU/PVDF = 30/70 blend. The real‐time SAXS results show that the interlamellar exclusion structure in these samples is irreversibly transformed into the interlamellar inclusion structure by heating the sample above the melting temperature of PBSU and that the PBSU chains are crystallized between the lamellae of PVDF during the cooling process. The factors controlling the lamellar structural changes are possibly a balance of the miscibility and the chain exclusion by tie‐molecules and/or the chain diffusion under confinement by the lamellae of PVDF with higher melting temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1959–1969, 2007  相似文献   
57.
Homogeneous precursor/precursor solutions with various compositions were obtained with appreciably high solid contents in N-methyl-2-pyrrolidone from soluble poly(amic diethyl ester) precursors of rodlike poly(p-phenylene biphenyltetracarboximide) (BPDA-PDA) and flexible poly(4,4′-oxydiphenylene biphenyltetracarboximide) (BPDA-ODA), which are hydrolytically more stable as well as more soluble than the corresponding poly(amic acid)s being equilibrated with the constituent monomers. Both optical microscopic and light scattering measurements showed that the dried precursor blend films and resultant polyimide composite films were optically transparent, regardless of compositions and process conditions. The composite films showed a single Tg behavior. However, for the composite of 30 wt % BPDA-PDA dispersed in the matrix of 70 wt % BPDA-ODA, a smectic crystalline-like aggregation of the BPDA-PDA component was detected on wide-angle x-ray diffraction patterns, indicative of microscopic phase separation between the two components. This phase separation was not detected on the optical microscopy, light scattering, and dynamic mechanical thermal analysis because of their resolution limits: Optical microscopy has a resolution of submicrometers, whereas dynamic mechanical thermal analysis and light scattering have a resolution of ca. 50 Å. Therefore, it is speculated that in the composite films BPDA-PDA and BPDA-ODA polyimide molecules have demixed on the scale of a few nanometers. The mean long periodicity, which was estimated from the small-angle x-ray scattering pattern, varied from 134 to 170 Å as the content of BPDA-ODA component increased. In addition, mechanical properties of the composite films were characterized. ©1995 John Wiley & Sons, Inc.  相似文献   
58.
The solubility behaviors of poly(sulfonyldiphenylene phenylphosphonate) (PSPPP), a very efficient flame retardant for poly(ethylene terephthalate) (PET), in more than 50 solvents were examined. Its solubility parameters (δ) were determined by the intrinsic viscosity and turbidic titration methods. The two methods obtained consistent results, δ = 21.0–21.6 J1/2/cm3/2 and δ = 21.0 J1/2/cm3/2, and the three‐dimensional solubility parameters were δd = 18.9 J1/2/cm3/2, δp = 8.8 J1/2/cm3/2, and δh = 5.9 J1/2/cm3/2. The miscibility of PSPPP with PET was estimated by the calculation of the heats of mixing, which were related to the difference between the solubility parameters of PSPPP and PET. Fourier transform infrared was used to examine the interactions between PSPPP and PET macromolecules, which were the internal factors of polymer–polymer miscibility. The results showed that PSPPP and PET were miscible within a very wide composition range, especially with less than 15 wt % PSPPP, a composition of interest for the preparation of flame‐retardant PET. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2296–2301, 2003  相似文献   
59.
60.
Blends of poly(acrylic acid) (PAA) and poly(p‐vinylphenol) (PVPh) were prepared from N,N‐dimethylformamide (DMF) and ethanol solutions. The DMF‐cast blends exhibited single Tg's, as shown by modulated differential scanning calorimetry, whereas the ethanol‐cast blends had double Tg's. Fourier transform infrared spectroscopy showed that there was a specific interaction between PAA and PVPh in the DMF‐cast blends. The single‐Tg blends cast from DMF showed single‐exponential decay behavior for the proton spin–lattice relaxation in both the laboratory frame and the rotating frame, indicating that the two polymers mixed intimately on a scale of 2–3 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 789–796, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号