首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   7篇
  国内免费   28篇
化学   366篇
晶体学   1篇
力学   7篇
物理学   29篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   10篇
  2015年   7篇
  2014年   11篇
  2013年   34篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   14篇
  2008年   11篇
  2007年   14篇
  2006年   14篇
  2005年   12篇
  2004年   23篇
  2003年   25篇
  2002年   19篇
  2001年   22篇
  2000年   24篇
  1999年   15篇
  1998年   13篇
  1997年   20篇
  1996年   14篇
  1995年   19篇
  1994年   14篇
  1993年   13篇
  1992年   8篇
  1991年   5篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1979年   1篇
排序方式: 共有403条查询结果,搜索用时 765 毫秒
341.
The effect of solvent and temperature on the miscibility of polystyrene (PS) and poly (styrene-co-acrylonitrile) (PSAN) was examined by the dilute-solution viscometry (DSV) method. The extent of miscibility of different PS/PSAN blend compositions (30/70, 50/50, and 70/30) in chloroform (CHCl3) and N, N- dimethyl formamide (DMF) was discussed in terms of the signs of various viscosity (ΔB, μ, Δ[η], α, and β) parameters. Based on the sign convention of these interaction parameters, partial miscibility in DMF and almost immiscibility in CHCl3 was indicated for the examined blend. The data obtained from the DSV method were then correlated with the ones obtained through density and refractive index measurements; good agreement was obtained. The study also revealed a relatively greater influence of temperature and composition on the miscibility of the blend in DMF than in CHCl3.  相似文献   
342.
Ternary organic blends have potential in realizing efficient bulk heterojunction (BHJ) organic solar cells by harvesting a larger portion of the solar spectrum than binary blends. Several challenging requirements, based on the electronic structure of the components of the ternary blend and their nanoscale morphology, need to be met in order to achieve high power conversion efficiency in ternary BHJs. The properties of a model ternary system comprising two donor polymers, poly(3-hexylthiophene) (P3HT) and a furan-containing, diketopyrrolopyrrole-thiophene low-bandgap polymer (PDPP2FT), with a fullerene acceptor, PC61BM, were examined. The relative miscibility of PC61BM with P3HT and PDPP2FT was examined using diffusion with dynamic secondary ion mass spectrometry (dynamic SIMS) measurements. Grazing incidence small and wide angle X-ray scattering analysis (GISAXS and GIWAXS) were used to study the morphology of the ternary blends. These measurements, along with optoelectronic characterization of ternary blend solar cells, indicate that the miscibility of the fullerene acceptor and donor polymers is a critical factor in the performance in a ternary cell. A guideline that the miscibility of the fullerene in the two polymers should be matched is proposed and further substantiated by examination of known well-performing ternary blends. The ternary blending of semiconducting components can improve the power conversion efficiency of bulk heterojunction organic photovoltaics. The blending of P3HT and PDPP2FT with PC61BM leads to good absorptive coverage of the incident solar spectrum and cascading transport energy levels. The performance of this ternary blend reveals the impact of the miscibility of PC61BM in each polymer as a function of composition, highlighting an important factor for optimization of ternary BHJs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 237–246  相似文献   
343.
Calculations were performed on the basis of a generalized Gibbs energy of mixing G , which is the sum of the Gibbs energy of mixing of the stagnant system and E s, the energy stored in the system during stationary flow. With increasing shear rate , the demixing temperatures shift to lower values (shear-induced mixing; diminution of the heterogeneous area), then to higher values (shear-induced demixing), and finally to lower values again before the effects fade out. The details of the rather complex phase diagrams resulting for a given shear rate are primarily determined by a band in the T/ plane ( = mole fraction) within which (2 E s/2) T <0 (i.e., E S acts towards phase separation). There are two ranges of within which closed miscibility gaps can exist: The more common outer islands are partly or totally situated outside the equilibrium gap (and within the above mentioned band). As is raised they break away from the mainland at the upper end of the first region of shear-induced mixing and shift to T>UCST where they submerge. Bound to a suitable choice of parameters, a second kind of closed miscibility gaps, the inner islands, which always remain within the equilibrium solubility gap (and outside the band of negative curvature of E S) is additionally observed. This time the islands break away from the mainland at the lower end of the first region of shear-induced mixing where they also submerge. The present findings are compared with the results of previous calculations for LCSTs.  相似文献   
344.

This is the second of two joint papers which study the influence of several physical properties on the transport phenomena in chemical flooding. To that aim, we use a previously reported ternary two-phase model into which representative physical properties have been incorporated as concentration-dependent functions. Physical properties such as phase behavior, interfacial tensions, residual saturations, relative permeabilities, phase viscosities and wettability have been analyzed in the first paper.

In this paper, we discuss the influence of capillary pressure, adsorption of the chemical component onto the rock and dispersion. Although arising from different phenomenological sources, these transport mechanisms show some similar effects on concentration profiles and on oil recovery. They are studied for systems with different phase behavior. A numerical analysis is also presented in order to determine the relevance of the number of grid blocks taken in the discretization of the differential equations. This numerical analysis provides useful guidelines for the selection of the appropriate numerical grid in each type of displacement.

  相似文献   
345.
We have investigated the fluorescence emission spectra of pyrene and anthracene dyes covalently bonded to polystyrene (PS) upon phase separation from poly(vinyl methyl ether) (PVME). The specific chemical structure of the fluorescent labels is found to affect the measured phase separation temperature TS, with fluorophores covalently attached in closer proximity to the PS backbone identifying phase separation a few degrees earlier. The sharp increase in fluorescence intensity upon phase separation that occurs for all fluorophores with little change in spectral shape is consistent with a mechanism of static fluorescence quenching resulting from the specific interaction with a nearby quenching molecular unit. Based on recent work that has identified a weak hydrogen bond occurring between the aromatic hydrogens of PS and the ether oxygen of PVME, we believe a similar weak hydrogen bond is likely occurring between the PVME oxygen and the aromatic dyes providing a local (few nanometer) sensitivity to phase separation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
346.
A comparative study of the phase diagrams and morphology of blends of poly(2‐ethylhexylacrylate) and low molecular weight liquid crystals (LCs) prepared under different conditions is presented. Two LCs are used; one is the 4‐cyano‐4′‐n‐pentyl‐biphenyl and the other is the eutectic mixture of cyanoparaphenylenes known as E7. Two series of blends are prepared under different conditions. The first series is obtained by the polymerization induced phase separation (PIPS) process under UV‐curing starting from a monomeric mixture, while the second series is prepared by a combination of the solvent induced phase separation and the thermally induced phase separation process starting from a mixture containing a commercial polymer with known molecular weight. Using gel permeation chromatography, it is found that the polymer molecular weight of the UV‐cured systems decreases with the concentration of LC in the precursor mixture. The experimentally obtained phase diagrams of these two series of systems show a miscibility shift at the composition where the molar mass of the polymer in the PIPS/UV blend exceeds that of the commercial polymer. Data are rationalized in terms of the Flory‐Huggins theory of isotropic mixing and the Maier‐Saupe theory of nematic order. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 18–27, 2007  相似文献   
347.
Four poly(butylene adipate) (PBA) polyesters, the structure ranging from linear to highly branched, were synthesized and solution casted with poly(vinyl chloride) (PVC) in 20 or 40 wt % concentrations to evaluate the influence of polyester chain architecture on miscibility, surface segregation, and mechanical properties. The miscibility of PVC and polyesters is based on specific interactions between the carbonyl group in the polyester and PVC. These interactions cause a shift in the carbonyl absorption band in the FTIR spectra. The shifting of the carbonyl absorption band was more significant for all the 40 wt % blends compared with the blends containing 20 wt % of the same polyester. In the 20 wt % blends surface segregation and enrichment of polyester at the blend surface increased as a function of branching. However, all the films containing 40 wt % of polyester had similar surface composition. This is explained by better miscibility and stronger intermolecular interactions in the 40 wt % blends, which counteract the effect of branching on the surface segregation. High degree of branching resulted in poor miscibility with PVC and poor mechanical properties. A linear or slightly branched polyester structure, however, resulted in good miscibility and desirable blend properties. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1552–1563, 2007  相似文献   
348.
The phase behavior of several polycarbonate homopolymers and copolymers blended with PVC and chlorinated PVCs (CPVCs) has been investigated. Tetrachlorobisphenol-A polycarbonate (TCPC) is miscible in all proportions with PVC and CPVCs containing up to70.2 wt% chlorine. CPVCs having chlorine contents greater than 70.2% (by weight) are immiscible with TCPC. Tetrabromobisphenol-A polycarbonate (TBPC) exhibits phase mixing with PVC and CPVCs; however, the high Tg of this polycarbonate (260°C) prevents adequate investigation of equilibrium phase behavior. Bisphenol-A polycarbonate (BPC), tetramethylbisphenol-A polycarbonate (TMPC), and hexafluorobisphenol-A polycarbonate (HFPC) form two-phase mixtures with the vinyl polymers. Microstructural differences in the CPVCs due to chlorination method (solution chlorination vs. slurry chlorination) have no effect on the miscibility results. Miscibility was observed in several copolycarbonate/CPVC blends and was found to be dependent on copolymer composition. Using a binary interaction, mean-field theory, segmental interaction parameters were estimated for repeat unit interactions. Based on the estimated interaction parameters, miscibility in these blends is primarily the result of intramolecular repulsive effects, rather than strong intermolecular attractive forces.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
349.
Miscibility of bisphenol-A polycarbonate (PC) and syndiotactic polymethyle methacrylate (sPMMA) blends was investigated by differential scanning calorimetry (DSC) and small-angle light scattering. Cloud-point measurements indicated the existence of both a lower critical solution temperature and an upper critical solution temperature, forming an immiscibility loop. This immiscibility gap was observed for PC blends with sPMMA of various molecular weights ranging from 8,300 to 55,000. The DSC study on solvent-cast and coprecipitated PC/sPMMA blends from tetrahydrofuran solutions showed a single glass transition, shifting regularly with composition. The annealing of the 50/50 composition within the immiscibility loop exhibited dual glass transitions, but the system reverted to a single phase upon annealing above the loop. Phase dissolution took place during annealing above the loop, followed by thermoxidative branching (cross-linking) reaction. Dry pellets of PC and sPMMA were melt mixed above the loop in a Mini-Max mixer/molder; these molded blends exhibited a single phase. © 1993 John Wiley & Sons, Inc.  相似文献   
350.
Polycarbonate of bisphenol-A (PC)/copolyetherester (Hy) blends have been obtained by melt mixing over the complete composition range. After testing the lack of interchange reactions and degradation under the conditions studied, the miscibility state was studied by DSC and DMTA. The blends appeared to be miscible in the melt state. A fairly complex phase behavior was obtained in the solid state with Tg-composition plots showing a single Tg at most of the compositions but very different after the first and second scans. This was attributed to the different crystalline content of the blends before the two scans. The presence of a Hy crystalline phase and a single PC/Hy amorphous phase in all the blends, with the exception of the 20/80 composition, was verified by DMTA. Several thermal treatments showed the presence of an immiscibility range and, thus, the presence of a UCST. A LCST, which in the case of the 50/50 and 40/60 blends would be at roughly 75°C, will also probably exist. © 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号