首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   41篇
  国内免费   9篇
化学   196篇
综合类   1篇
物理学   53篇
  2024年   2篇
  2023年   6篇
  2022年   10篇
  2021年   18篇
  2020年   15篇
  2019年   12篇
  2018年   12篇
  2017年   11篇
  2016年   22篇
  2015年   9篇
  2014年   25篇
  2013年   30篇
  2012年   10篇
  2011年   11篇
  2010年   2篇
  2009年   9篇
  2008年   5篇
  2007年   1篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1991年   1篇
  1988年   2篇
  1981年   1篇
排序方式: 共有250条查询结果,搜索用时 31 毫秒
81.
The cooperative enhancement of water binding to the antiparallel β‐sheet models has been studied by quantum chemical calculations at the MP2/6‐311++G**//MP2/6‐31G* level. The binding energies of the two antiparallel β‐sheet models consisting of two strands of diglypeptide are calculated by supermolecular approach. Then water molecules are gradually bonded to the diglypeptide by N? H···OH2 and C?O···HOH hydrogen bonds. Our calculation results indicated that the hydrogen bond length and the atom charge distribution are affected by the addition of H2O molecules. The binding energy of antiparallel diglypeptide β‐sheet models has a great improvement by the increasing of the hydrogen bond cooperativity and the more H2O molecules added the more cooperativity enhancement can be found. The orbital interactions are calculated by natural bond orbital analysis, and the results indicate that the cooperative enhancement is closely related to the orbital interaction. © 2012 Wiley Periodicals, Inc.  相似文献   
82.
Artificial ditopic receptors for the differentiation of phosphorylated peptides varying in i+3 amino acid side chains were synthesized, and their binding affinities and selectivities were determined. The synthetic receptors show the highest binding affinities to phosphorylated peptides under physiological conditions (HEPES, pH 7.5, 154 mM NaCl) reported thus far for artificial systems. The tight and selective binding was achieved by high cooperativity of the two binding moieties in the receptor molecules. All receptors interact with phosphorylated serine by bis(ZnII-cyclen) complex coordination and a second binding site recognizing a carboxylate or imidazole amino acid side chain functionality.  相似文献   
83.
Supramolecular split‐enzyme complementation restores enzymatic activity and allows for on–off switching. Split‐luciferase fragment pairs were provided with an N‐terminal FGG sequence and screened for complementation through host‐guest binding to cucurbit[8]uril (Q8). Split‐luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20‐fold upregulation of luciferase activity. Supramolecular split‐luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak‐binding FGG peptide revealed a 300‐fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks.  相似文献   
84.
In computational chemistry, non‐additive and cooperative effects can be defined in terms of a (differential) many‐body expansion of the energy or any other physical property of the molecular system of interest. One‐body terms describe energies or properties of the subsystems, two‐body terms describe non‐additive but pairwise contributions and three‐body as well as higher‐order terms can be interpreted as a measure for cooperativity. In the present article, this concept is applied to the analysis of ultraviolet/visible (UV/Vis) spectra of homotrinuclear transition‐metal complexes by means of a many‐body expansion of the change in the spectrum induced by replacing each of the three transition‐metal ions by another transition‐metal ion to yield a different homotrinuclear transition‐metal complex. Computed spectra for the triangulo‐complexes [M3{Si(mtMe)3}2] (M=Pd/Pt, mtMe=methimazole) and tritopic triphenylene‐based N‐heterocyclic carbene Rh/Ir complexes illustrate the concept, showing large and small differential three‐body cooperativity, respectively.  相似文献   
85.
The replacement of a CH group of benzene by a triel (Tr) atom places a positive region of electrostatic potential near the Tr atom in the plane of the aromatic ring. This σ-hole can interact with an X lone pair of XCCH (X=F, Cl, Br, and I) to form a triel bond (TrB). The interaction energy between C5H5Tr and FCCH lies in the range between 2.2 and 4.4 kcal/mol, in the order Tr=B<Ga<Al. This bond is strengthened by halogen substituents on the ring, particularly on the site adjacent to Tr. There is a much stronger strengthening trend as the F of the FCCH nucleophile is replaced by the heavier halogen atoms, rising up to 22 kcal/mol for ICCH. Adding a Li+ cation above the ring pulls density toward itself and thus magnifies the Tr σ-hole. The TrB to the XCCH nucleophile is thereby magnified as is the strength of the TrB. This positive cooperativity is particularly large for Tr=B.  相似文献   
86.
As a candidate for bifunctional asymmetric catalysts containing a half-sandwich C–N chelating Ir(III) framework (azairidacycle), a dinuclear Ir complex with an axially chiral linkage is newly designed. An expedient synthesis of chiral 2,2′-bis(aminomethyl)-1,1′-binaphthyl (1) from 1,1-bi-2-naphthol (BINOL) was accomplished by a three-step process involving nickel-catalyzed cyanation and subsequent reduction with Raney-Ni and KBH4. The reaction of (S)-1 with an equimolar amount of [IrCl2Cp*]2 (Cp* = η5–C5(CH3)5) in the presence of sodium acetate in acetonitrile at 80 °C gave a diastereomeric mixture of new dinuclear dichloridodiiridium complexes (5) through the double C–H bond cleavage, as confirmed by 1H NMR spectroscopy. A loss of the central chirality on the Ir centers of 5 was demonstrated by treatment with KOC(CH3)3 to generate the corresponding 16e amidoiridium complex 6. The following hydrogen transfer from 2-propanol to 6 provided diastereomers of hydrido(amine)iridium retaining the bis(azairidacycle) architecture. The dinuclear chlorido(amine)iridium 5 can serve as a catalyst precursor for the asymmetric transfer hydrogenation of acetophenone with a substrate to a catalyst ratio of 200 in the presence of KOC(CH3)3 in 2-propanol, leading to (S)-1-phenylethanol with up to an enantiomeric excess (ee) of 67%.  相似文献   
87.
The {Fe2Dy2} butterfly systems can show single molecule magnet (SMM) behaviour, the nature of which depends on details of the electronic structure, as previously demonstrated for the [Fe2Dy23-OH)2(Me-teaH)2(O2CPh)6] compound, where the [N,N-bis-(2-hydroxyethyl)-amino]-2-propanol (Me-teaH3) ligand is usually used in its racemic form. Here, we describe the consequences for the SMM properties by using enantiopure versions of this ligand and present the first homochiral 3d/4 f SMM, which could only be obtained for the S enantiomer of the ligand for [Fe2Dy23-OH)2(Me-teaH)2(O2CPh)6] since the R enantiomer underwent significant racemisation. To investigate this further, we prepared the [Fe2Dy23-OH)2(Me-teaH)2(O2CPh)4(NO3)2] version, which could be obtained as the RS-, R- and S-compounds. Remarkably, the enantiopure versions show enhanced slow relaxation of magnetisation. The use of the enantiomerically pure ligand suppresses QTM, leading to the conclusion that use of enantiopure ligands is a “gamechanger” by breaking the cluster symmetry and altering the intimate details of the coordination cluster's molecular structure.  相似文献   
88.
The enhancing effects of molecule X (X = PH2Cl, SHCl, ClCl) on S···S and Se···Se chalcogen–chalcogen bonds in the cyclic trimers SHCl···SHCl···X and SeHCl···SeHCl···X were investigated by calculations at the MP2/aug‐cc‐pVTZ level. When molecule X is added to the dimer SHCl···SHCl (SeHCl···SeHCl), cyclic trimers are formed. Compared with the dimer, all the cyclic trimers have shorter S···S (Se···Se) lengths, greater electron densities, negative three‐body interaction energies, and larger second‐order perturbation energies. These results indicate that the addition of molecule X strengthens the original S···S (Se···Se) bond. For the SHCl···SHCl···X cyclic trimers, the S···S bond is strongest in SHCl···SHCl···PH2Cl, weaker in SHCl···SHCl···SHCl, and weakest in SHCl···SHCl···ClCl. This same trend is observed for the Se···Se bond in SeHCl···SeHCl···X. This means that PH2Cl provides the greatest enhancement to the S···S (Se···Se) interaction.  相似文献   
89.
The five trimers of H2O···HNC···H2O, H2O···H2O···HNC, HNC···H2O···H2O, H2O···HNC···HNC, and HNC···HNC···H2O have been studied with quantum chemical calculations. Their structures, harmonic vibrational frequencies and interaction energies have been calculated at the B3LYP and MP2 levels with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets. The cooperative effect on these properties has also been studied quantitatively. For HNC:(H2O)2 systems, the cyclic H2O···H2O···HNC trimer is most stable with an interaction energy of ?16.01 kcal/mol and a large cooperative energy of ?3.25 kcal/mol at the MP2/aug‐cc‐pVTZ level. For H2O:(HNC)2 systems, the interaction energy and cooperative energy in the H2O···HNC···HNC trimer are larger than those in the HNC···HNC···H2O trimer. The NH stretch frequency has a blue shift for the terminal HNC molecule in the HNC···H2O···H2O and HNC···HNC···H2O trimers and a red shift in other cases. A many‐body analysis has also been performed to understand the interaction energies in these hydrogen‐bonded clusters. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
90.
The study of the interaction of a pyramidal tetramer of Cu2Pt2 with the H2 is reported here through ab initio multiconfigurational self-consistent field (MC-SCF) calculations, plus extensive multireference configuration interaction (MR-CI), variational and perturbative calculations. The lowest three electronic states X 1A′, a 3A′ and a 1A′ of the bare cluster were considered in order to study this interaction. For the H2 Cs approaching a Pt vertex, results show that the Cu2Pt2 pyramid cluster in its X 1A′ and a 1A′ states can spontaneously capture and dissociate the H2. For the H2 Cs approaching a Cu vertex, where H2 is located in the Cs reflecting plane, the Cu2Pt2 cluster in its X 1A′ electronic state shows capture of the hydrogen molecule after surmounting an energy barrier; moreover, in this approach the Cu2Pt2 cluster in its a 1A′ electronic state shows spontaneous capture of the hydrogen molecule. For the H2 approaching a Cu vertex, where the Cs reflecting plane bisects the H2 molecule, the Cu2Pt2 cluster in its three lowest-lying states is able to capture the hydrogen molecule after surmounting a small barrier. The Cu2Pt2+H2 Cs face-on interactions show a lower H2 activation than that which was obtained in the equivalent Pt4+H2 interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号