首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9279篇
  免费   1271篇
  国内免费   1908篇
化学   10027篇
晶体学   115篇
力学   294篇
综合类   72篇
数学   50篇
物理学   1900篇
  2024年   51篇
  2023年   147篇
  2022年   378篇
  2021年   492篇
  2020年   690篇
  2019年   522篇
  2018年   357篇
  2017年   370篇
  2016年   415篇
  2015年   424篇
  2014年   472篇
  2013年   821篇
  2012年   640篇
  2011年   495篇
  2010年   373篇
  2009年   462篇
  2008年   466篇
  2007年   487篇
  2006年   500篇
  2005年   445篇
  2004年   464篇
  2003年   395篇
  2002年   404篇
  2001年   253篇
  2000年   253篇
  1999年   193篇
  1998年   187篇
  1997年   168篇
  1996年   165篇
  1995年   171篇
  1994年   138篇
  1993年   128篇
  1992年   115篇
  1991年   69篇
  1990年   55篇
  1989年   42篇
  1988年   41篇
  1987年   45篇
  1986年   21篇
  1985年   24篇
  1984年   18篇
  1983年   11篇
  1982年   16篇
  1981年   15篇
  1980年   17篇
  1979年   12篇
  1978年   6篇
  1977年   4篇
  1976年   8篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
采用简便的方法合成了20~40 nm长、56 m^2·g^-1的比表面积的羟基磷灰石纳米管(HAP)。然后用制备的HAP纳米管在水溶液中同时吸附Pb^2+、Cd^2+、Cu^2+、Co^2+、Ni^2+、Zn^2+和Hg^2+,其具有高的吸附能力,并能实现快速去除。此外,制备的HAP纳米管对7种重金属离子的脱附率均小于1%,表现出较强的稳定性。实验数据采用Langmuir等温线模型和Freundlich等温线模型进行分析。2个方程的应用结果表明,吸附平衡最适合Langmuir模型,单层饱和吸附能力为958.28 mg·g^-1,具有较好的吸附性能。通过能量色散X射线光谱(EDS)和X射线衍射(XRD)图进一步研究了吸附机理,结果表明,当溶液中Pb^2+离子数量足够时,吸附机理为Pb取代了HAP中的Ca,形成了更稳定的Pb5(PO4)3(OH)。上述实验研究预测了利用HAP纳米管处理含铅废水在环境污染治理中的可行性。  相似文献   
952.
龙思宇  裴响林  罗丹  付海  龚维 《化学通报》2021,84(2):120-128
钌催化剂是近年来新兴的贵金属催化剂,其负载型催化剂具有节约成本、可回收利用、催化性能优异等优势,受到研究人员的广泛关注.本文对负载型钌基催化剂在氨合成反应、加氢反应、氧化反应的合成及应用进行了综述,主要阐述了反应过程中的载体与助剂、制备方法和催化性能,并对当前反应中存在的问题进行归纳和总结,最后提出负载型钌基催化剂现阶...  相似文献   
953.
《Arabian Journal of Chemistry》2020,13(12):8499-8512
The present study introduces a high efficiency metal alloy-based solid-phase microextraction (SPME) fiber coated with a green biowaste nanocomposite of chicken feet yellow membrane mixed with graphene oxide (CFYM/GO). An Al/Cr commercial heating element (aluchrom, AC) has been selected as the fiber substrate and designed as coiled form (CAC-SPME) to enhance its extraction and pre-concentration capacity. The fabricated fiber, CAC-SPME/CFYM/GO, has been employed for the extraction and pre-concentration of some commonly seen PAHs in different standard/real samples prior to their high performance liquid chromatography- ultraviolet (HPLC-UV) analyzing. The synthesized materials and the fibers surface were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy analysis and Brunauer-Emmett-Teller surface area analysis. Under the optimized experimental conditions, low detection limits (LOD, 0.039–0.30 µg L–1), wide linear ranges (LR, 0.13–643 µg L–1) and good relative recoveries (RR, 76.20–105.60%) were achieved for all the target analytes. The materials applied to prepare this fiber were low-priced and accessible and also eliminated the need for expensive coating substances. In addition, using of the AC alloy substrate was increased the fiber physicochemical resistance and solved the breakage drawback of the conventional SPME fibers. Moreover, simple fabrication, high rigidity, long service life and high extraction capacity were some of the other advantages of the suggested fiber. Therefore, the proposed method can be utilized successfully for the routine analysis of PAHs in different matrixes.  相似文献   
954.
冯娟娟  孙明霞  冯洋  辛绪波  丁亚丽  孙敏 《色谱》2022,40(11):953-965
样品前处理技术在样品分析中发挥着越来越重要的作用,而对分析物的富集能力和对样品基体的净化程度主要取决于高效的样品前处理材料,所以发展高性能的样品前处理材料一直是该领域的前沿研究方向。近年来,各类先进材料已经被引入样品前处理领域,发展了多种高性能的萃取材料。由于独特的物理化学性质,石墨烯已在各个研究领域获得广泛关注,在样品前处理领域也发挥着重要作用。基于高的比表面积、大的π电子结构、优异的吸附性能、丰富的官能团和易于化学改性等优点,石墨烯和氧化石墨烯基萃取材料被成功应用于各种样品的前处理,对不同领域中多种类型分析物表现出优异的萃取性能。该论文总结和讨论了近3年来石墨烯材料(石墨烯、氧化石墨烯及其功能化材料)在柱固相萃取、分散固相萃取、磁性固相萃取、搅拌棒萃取、纤维固相微萃取和管内固相微萃取等方面的研究进展。基于多种萃取机理如π-π、静电、疏水、亲水、氢键等相互作用,石墨烯萃取材料能够高效萃取和选择性富集不同类别的目标分析物,如重金属离子、多环芳烃、塑化剂、雌激素、药物分子、农药残留、兽药残留等。基于新型石墨烯萃取材料的各种样品前处理技术与多种检测技术如色谱、质谱、原子吸收光谱等联用,广泛应用于环境监测、食品安全和生化分析等领域。最后,总结了石墨烯在样品前处理领域中存在的问题,并展望了未来的发展趋势。  相似文献   
955.
Zeolite imidazole frameworks 8(ZIF-8) and modified ones after pyrolysis are highly promising toward oxygen reduction reaction(ORR). Especially, the compositional modification of ZIF-8 is crucial to the enhancement of ORR performance, yet limited to the substitution of skeletal Zn(II) with other cations or simple physical adsorption of cations. Herein, we report the decoration of ZIF-8 with ORR active hemin(FeP) and Co(III) protoporphyrin(CoP) via the coordination between the peripheral carboxylic group of FeP and CoP with skeletal Zn(II). This allows well control over the quantity of loaded FeP and CoP, critical to the synthesis of advanced electrocatalysts. Subsequent pyrolysis of FeP and CoP co-decorated ZIF-8 leads to highly active ORR electrocatalysts with a half-wave potential(E1/2) of 0. 913 V(vs. RHE) in 0.1 mol/L KOH aq. and an E1/2 of 0.803 V(vs. RHE) in 0.1 mol/L HClO4 aq. Moreover, our electrocatalyst shows much more improved and comparable durability in alkaline and acidic media, respectively, during 3000 cycles of cyclic voltammetry(CV) scanning relative to commercial Pt/C.  相似文献   
956.
Metal organic frameworks have received great attention as the chiral stationary phase for racemic drug separation because of their fascinating structures and properties. However, the most homochiral metal organic frameworks were constructed by rare and precious chiral organic ligands. In this work, an achiral metal organic framework, together with a natural chiral selector carboxymethyl β-cyclodextrin built a synergistic separation system in the open tubular capillary electrochromatography. The novel coated columns were developed by inducing metal organic framework nanoparticles to grow on the imidazolyl functional capillary inner wall. The baseline separations of hydroxychloroquine, ofloxacin, and atenolol were achieved in the synergistic separation system. The effects of the concentration of chiral selector, pH, voltage, and the concentration of organic additives were studied. Compared with chiral selector auxiliary bare capillary, the resolutions of three drugs were remarkably improved. The relative standard deviations for the retention time of intraday (n = 6), interday (n = 6), and column-to-column were less than 2.1, 2.6, and 5.2%, respectively. These results demonstrate that affordable synergistic separation systems are prospective for racemic drug enantioseparation in capillary electrochromatography.  相似文献   
957.
成分和结构是影响多元过渡金属硒化物电化学活性的关键因素。适当掺杂其他金属元素可以有效提高电极材料的电化学性能。通过简单的一步水热法,在泡沫镍上制备出了一种无黏结剂的Mo掺杂NiMnSe2(记作Ni0.8Mo0.2MnSe2)。Mo的少量掺杂为电极材料提供了丰富的反应活性位点,大大提高了NiMnSe2的电化学性能。在1 A·g-1时,Ni0.8Mo0.2MnSe2的比容量达到1 404.0 F·g-1。掺杂Mo显著降低了NiMnSe2的电荷转移电阻和扩散电阻。组装的混合超级电容器Ni0.8Mo0.2MnSe2//AC (活性炭)比容量达到81.6 F·g-1,且倍率性能优异。在2 A·g-1下连续充放电10 000周,容量保持率为95.8%,表现出超高的循环稳定性。混合超级电容器Ni0.8Mo0.2MnSe2//AC在376.6 W·kg-1的功率密度下,能量密度达25.5 Wh·kg-1,高于NiMnSe2//AC (17.3 Wh·kg-1)。  相似文献   
958.
为探究便携式X射线荧光光谱法(Portable X-ray fluorescence spectrometry method, PXRF)测定结果的不确定度, 应用PXRF法和传统实验室方法对湖南某典型有色金属污染场地及周边土壤中的重金属进行测定,通过建立线性回归模型对比分析两种方法的测定数据,探究了PXRF法测定数据的准确程度和置信区间。结果表明,PXRF法原位、异位测定值与传统实验室方法测定值均能呈现较好的线性相关性,As、Cu、Pb、Cd等元素的决定性系数(R2)均大于0.70,其检测数据质量均能达到定量水平;PXRF法与实验室方法测定值间比率的置信区间结果显示,Cd元素的准确性最好,其次为Pb、Cu、As,比率置信区间分别为(0.57, 1.89)、(0.38, 2.22)、(0.31, 2.25)、(0.20, 4.53)。由此可见,PXRF法是一种方便快捷且相对准确的土壤重金属现场检测方法,可广泛地应用于污染场地调查和土壤修复工程实践中。  相似文献   
959.
第一性原理计算研究发现由于二维TiC单原子层具有高的比表面积与大量的暴露在表面的Ti原子,其是一种非常有潜力的储氢材料.计算结果显示H2可以在二维TiC单原子层表面进行物理吸附与化学吸附.其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV.覆盖度为1和1/4层(ML)时,H2分子在二维TiC单原子层表面的离解势垒分别为1.12和0.33 eV.因此,除了物理吸附与化学吸附,TiC表面还存在H单原子吸附.最大的H2储存率可以达到7.69%(质量分数).其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%.符合Kubas吸附特征的储存率为3.07%.化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   
960.
用简单的化学方法制备了过渡金属(TM)壳聚糖水杨醛席夫碱配合物,然后以此配合物为金属源和N源、以硝酸预处理石墨为载体,经热处理后制备了过渡金属/氮掺杂石墨催化剂TM-N-C-t(TM=Co,Ni,Cu;t=200,400,600,800,1 000℃).以此催化剂为修饰剂制备了玻碳修饰电极,并用循环伏安法(CV)和旋转圆盘电极(RDE)伏安法研究了催化剂TM-N-C-t的电化学行为和电催化氧还原(ORR)的催化性能,催化剂的组成和结构采用TG,FT-IR,XRD,XPS等技术进行了表征.研究结果表明,催化剂TM-N-C-t对ORR均显示不同程度的催化活性,其中以1 000℃热处理的钴基催化剂Co-N-C-1000的催化活性最好,其活性已接近相同条件下的商用催化剂JM 20%Pt/C,催化活性位主要为Co—N—C.根据扩散控制的不可逆反应的循环伏安行为,计算得到了TM-N-C-t催化剂电催化ORR的动力学参数,并以此提出了氧还原催化反应的机理,在活性最好的催化剂Co-N-C-1000修饰电极上,氧气以4e转移途径被还原为水.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号