首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19343篇
  免费   2872篇
  国内免费   4744篇
化学   19671篇
晶体学   442篇
力学   400篇
综合类   130篇
数学   120篇
物理学   6196篇
  2024年   73篇
  2023年   297篇
  2022年   702篇
  2021年   884篇
  2020年   1247篇
  2019年   894篇
  2018年   696篇
  2017年   858篇
  2016年   967篇
  2015年   930篇
  2014年   1119篇
  2013年   1704篇
  2012年   1328篇
  2011年   1335篇
  2010年   1008篇
  2009年   1175篇
  2008年   1139篇
  2007年   1228篇
  2006年   1160篇
  2005年   1027篇
  2004年   948篇
  2003年   860篇
  2002年   763篇
  2001年   546篇
  2000年   553篇
  1999年   482篇
  1998年   422篇
  1997年   378篇
  1996年   364篇
  1995年   339篇
  1994年   287篇
  1993年   263篇
  1992年   235篇
  1991年   143篇
  1990年   105篇
  1989年   83篇
  1988年   89篇
  1987年   71篇
  1986年   39篇
  1985年   41篇
  1984年   26篇
  1983年   15篇
  1982年   25篇
  1981年   24篇
  1980年   27篇
  1979年   14篇
  1978年   8篇
  1977年   7篇
  1976年   9篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
11.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
12.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
13.
Guided by the self-penetrating features can improve the stability of metal organic frameworks (MOFs), an unprecedented 3D self-penetrated framework, {[Zn (tptc)0.5(bimb)]·H2O}n ( NUC-6 , here NUC corresponding to North University of China), with 3D (4,4)-c {86} net, was designed. Benefit from the high chemical stability and excellent luminescent property, NUC-6 can be act as an efficient multi-response chemo-sensor in detecting dichloronitroaniline pesticide and nitrofuran antibiotics in water with the detection limits are 116 ppb for DCN pesticide, 16 ppb for NFT antibiotic, and 12 ppb for NTZ antibiotic. Besides, the mechanisms of luminescence quenching were revealed from the viewpoint of internal filter effect (IFE) and photo-induced electron transfer (PET), implied by the optical spectroscopy and quantum chemical calculation. This work provides a promising strategy to design stable MOFs by improving the self-penetrating features and to expand their practical applications in the detection of organic pollutants in aqueous medium.  相似文献   
14.
Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol‐ene “ click ” photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman‐IR , and small angle X‐ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1548–1557  相似文献   
15.
Following a thermal reduction method, platinum nanoparticles were synthesized and stabilized by polyvinylpyrrolidone. The colloidal platinum nanoparticles were stable for more than 3 months. The micrograph analysis unveiled that the colloidal platinum nanoparticles were well dispersed with an average size of 2.53 nm. The sol–gel‐based inverse micelle strategy was applied to synthesize mesoporous iron oxide material. The colloidal platinum nanoparticles were deposited on mesoporous iron oxide through the capillary inclusion method. The small‐angle X‐ray scattering analysis indicated that the dimension of platinum nanoparticles deposited on mesoporous iron oxide (Pt‐Fe2O3) was 2.64 nm. X‐ray photoelectron spectroscopy (XPS) data showed that the binding energy on Pt‐Fe2O3 surface decreased owing to mesoporous support–nanoparticle interaction. Both colloidal and deposited platinum nanocatalysts improved the degradation of methyl orange under reduction conditions. The activation energy on the deposited platinum nanocatalyst interface (2.66 kJ mol?1) was significantly lowered compared with the one on the colloidal platinum nanocatalyst interface (40.63 ± 0.53 kJ mol?1).  相似文献   
16.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
17.
18.
The thiol‐ene reaction between trans‐limonene oxide (trans‐LO) and ethane‐1,2‐dithiol in the presence of triethylborane affords a bio‐based bis‐functional epoxide (bis‐trans‐LO). The crosslinking reaction of bis‐trans‐LO with branched polyethyleneimine (BPEI; Mn = 600; BPEI600) at a feed ratio of bis‐trans‐LO/BPEI600 = 57/43 (wt/wt) yields the corresponding network polymer with Td10 (10% thermal decomposition temperature) of 304.7 °C in 98% yield. In contrast, negligible amounts of network polymer are obtained by the reaction of bis‐LO (bis‐functional epoxide derived from cis and trans‐LO) and BPEI600 regardless of the feed ratio. The mechanical strengths as measured by direct tensile tests of the network polymers derived from bis‐trans‐LO and BPEI600,1800 (Mn = 600 and 1800) were approximately 16 and 11 times higher than that of bis‐LO and BPEI1800, respectively. The tensile shear strengths of the metal‐to‐metal adhesive bonds induced by bis‐trans‐LO and BPEI600,1800 were 9.5 and 14.1 MPa, respectively. DMA revealed that the storage modulus of the network polymer derived from bis‐trans‐LO and BPEI1800 in the rubber region was higher than that of the material prepared from bis‐LO and BPEI1800, indicating higher crosslink density of the bis‐trans‐LO/BPEI1800 system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2466–2473  相似文献   
19.
Although small cyclic- and open-chain unsaturated hydrocarbon anions such as cyclopentadienide and open-chain pentadienide are used as the strongly electron-donating auxiliary ligands for metal complexes, more extended π-conjugated unsaturated hydrocarbon anions have rarely been used in coordination chemistry, despite their potential ability to serve as the multiply bridging π-ligands for metal clusters. This work reports isolation of metal chain clusters bearing the multi-dentate, open-chain extended unsaturated hydrocarbon anion ligands. The extended open-chain π-conjugated polyenyl ligands could effectively stabilize oxidized palladium chains, including an unprecedented [Pd4]4+ chain.  相似文献   
20.
A zinc coordination polymer derived from pyridine-2,6-dicarboxylate (PDC), {[Zn2(PDC)2]}n, was successfully prepared via conventional, sonication and microwave-irradiation methods. The composition and characteristics of the obtained coordination polymers (CPs) were investigated by elemental analysis, TGA/DTA, X-ray diffraction and spectroscopic techniques. The so obtained CPs were heat-treated in the air at 600 °C for 2 h to produce ZnO of nanosized particles (NPs). It is of interest to note that the synthesis approach of the precursor greatly affects both the nanoparticle size and the structure of the resulting ZnO NPs. Moreover, the smallest particle size was associated with the sample derived from the ultrasonically prepared precursor. TEM analysis revealed that all samples have sphere-like morphologies. Structural analysis of the prepared ZnO samples was conducted and compared using Rietveld analysis of their PXRD patterns. Optical band gap calculations based on analysis of the UV–vis spectra of ZnO samples using Tauc's power law were achieved. The highest band gap of 3.63 eV was observed for ZnO sample obtained from the ultrasonically prepared precursor. Furthermore, the photocatalytic activity of ZnO NPs for the removal of Eosin Y color was monitored. The highest removal efficiency was recorded for ZnO originated from the ultrasonically synthesized precursor. Enhancement of removal efficiency that reached 98% was attained in only a period of 8 min. Its recycling test showed that it can be reused without structural changes over four cycling experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号