首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1793篇
  免费   373篇
  国内免费   807篇
化学   2784篇
晶体学   20篇
力学   8篇
综合类   9篇
物理学   152篇
  2024年   5篇
  2023年   11篇
  2022年   35篇
  2021年   79篇
  2020年   117篇
  2019年   98篇
  2018年   79篇
  2017年   85篇
  2016年   97篇
  2015年   173篇
  2014年   144篇
  2013年   218篇
  2012年   199篇
  2011年   179篇
  2010年   165篇
  2009年   161篇
  2008年   153篇
  2007年   153篇
  2006年   168篇
  2005年   151篇
  2004年   116篇
  2003年   117篇
  2002年   56篇
  2001年   57篇
  2000年   53篇
  1999年   48篇
  1998年   20篇
  1997年   16篇
  1996年   10篇
  1995年   4篇
  1994年   4篇
  1991年   2篇
排序方式: 共有2973条查询结果,搜索用时 15 毫秒
131.
Silanol groups on a silica surface affect the activity of immobilized catalysts because they can influence the hydrophilicity/hydrophobicity, matter transfer, or even transition state in a catalytic reaction. Previously, these silanol groups have usually been passivated by using surface‐passivation reagents, such as alkoxysilanes, bis‐silylamine reagents, chlorosilanes, etc., and surface passivation has typically been found in mesoporous‐silicas‐supported molecular catalysts and heteroatomic catalysts. However, this property has rarely been reported in mesoporous‐silicas‐supported metal‐nanoparticle catalysts. Herein, we prepared an almost‐superhydrophobic SBA‐15‐supported gold‐nanoparticle catalyst by using surface passivation, in which the catalytic activity increased more than 14 times for the reduction of nitrobenzene compared with non‐passivated SBA‐15. In addition, this catalyst can selectively catalyze hydrophobic molecules under our experimental conditions, owing to its high (almost superhydrophobic) hydrophobic properties.  相似文献   
132.
A solvothermal post‐treatment method was developed to synthesize Fe3O4@mesosilica core–shell nanospheres (CSNs) with a well‐preserved morphology, mesoporous structure, and tunable large pore diameters (2.5–17.6 nm) for the first time. N,N‐Dimethylhexadecylamine (DMHA), which was generated in situ during the heat‐treatment process, was mainly responsible for this pore‐size enlargement, as characterized by NMR spectroscopy. This pore‐size expansion can be strengthened with the aid of hexamethyldisilazane (HMDS), whilst the nature of the surface of the Fe3O4@mesosilica CSNs can be easily modified with trimethylsilyl groups during the pore‐size‐expansion process. The hydrophobicity of the Fe3O4@mesosilica CSNs increased for the enlarged mesopores and the adsorption capacity of these CSNs for benzene (up to 1.5 g g?1) is the highest ever reported for Fe3O4@mesosilica CSNs. The resultant Fe3O4@mesosilica CSNs (pore size: 10 nm) showed a 3.6‐times higher adsorption capacity of lysozyme than those without the pore expansion (pore size: 2.5 nm), thus making them a good candidate for loading large molecules.  相似文献   
133.
Abstract

Mesocellular foams (MCF) silica nanometer mesoporous molecular sieve was successfully synthesized by hydrothermal route. This method used poly(ethylene glycol)-block-poly(propyl glycol)-block-poly(ethylene glycol) as template, tetraethyl orthosilicate as silica source and 1, 3, 5-trimethylbenzene as pore-expanding agent to prepare nano mesoporous MCF in acidic medium. The MCF mesoporous material was characterized by powder X-ray diffraction (XRD), infrared (IR) spectroscopy, low temperature nitrogen adsorption-desorption at 77?K, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The effects of pH, temperature, adsorbent dosage, cefalexin dosage and contact time on the immobilization of cefalexin were studied. Under the optimized conditions, MCF has the best effect on the drug immobilization. The maximum immobilization amount of cefalexin in MCF nano-mesoporous material is 498.8?mg/g. The behavior of adsorption of cefalexin by MCF belongs to multilayer heterogeneous adsorption, which accords with the Freundlich adsorption isotherm. In the adsorption process, all the ΔH0, ΔS0 and Gibbs free energy change ΔG0 are less than zero, indicating that the adsorption process is spontaneous, exothermic entropy decreasing reaction at ordinary temperature. Kinetic investigation showed that the adsorption process of cefalexin on MCF belongs to the pseudo-second-order kinetic process. The release laws of composite material cephalexin-MCF in the simulated body fluid, gastric and intestinal fluid were investigated, respectively. The maximum cumulative release rate in simulated body fluid was 99.4% at 18?h. The maximum cumulative release rate in the simulated gastric juice was 48.7% at 6?h and in the simulated intestinal fluid the maximum cumulative release rate of 61.9% was achieved at 8?h. These release processes satisfy the zero-order ordered kinetic process.  相似文献   
134.
This article studies the peroxidation of linoleic acid and of porcine skin lipids on ultraviolet B (UVB) irradiation, in the presence of various TiO2 specimens used as inorganic sunscreen pigments in different emulsion systems. It was found that different TiO2 specimens induce quite variable lipid peroxidation in the same emulsion system, which suggests that the different coatings widely differ in their effectiveness to lower the photocatalytic activity of TiO2. However, it was also found that the extent of lipid peroxidation caused by the same TiO2 pigment in different emulsions was even more variable than the effects of different pigments in the same system. This finding might imply that the choice of the formulation components different from TiO2 could be of paramount importance as far as the potential skin damage induced by the photocatalytic activity of TiO2 is concerned.  相似文献   
135.
A unique one‐dimensional (1D) sandwich single‐walled TiO2 nanotube (STNT) is proposed as a photoanode nanomaterial with perfect morphology and large specific surface area. We have thoroughly examined the elementary photoelectronic processes occurring at the porphyrin dye/STNT hetero‐interface in dye‐sensitized solar cells (DSSCs) by theoretical simulation. It is desirable to investigate the interfacial photoelectronic processes to elucidate the electron transfer and transport mechanism in 1D STNT‐based DSSCs. We have found that the photoexcitation and interfacial charge separation mechanism can be described as follows. A ground‐state electron of the dye molecule (localized around the electron donor) is first promoted to the excited state (distributed electron donor), and then undergoes ultrafast injection into the conduction band of the STNT, leaving a hole around the oxidized dye. Significantly, the injected electron in the conduction band is transported along the STNT by means of Ti 3d orbitals, offering a unidirectional electron pathway toward the electrode for massive collection without the observation of trap states. Our study not only provides theoretical guidelines for the modification of TiO2 nanotubes as a photoanode material, but also opens a new perspective for the development of a novel class of TiO2 nanotubes with high power‐generation efficiency.  相似文献   
136.
A multifunctional system for intracellular drug delivery and simultaneous fluorescent imaging was constructed by using histidine‐tagged, cyan fluorescent protein (CFP)‐capped magnetic mesoporous silica nanoparticles (MMSNs). This protein‐capped multifunctional nanostructure is highly biocompatible and does not affect cell viability or proliferation. The CFP acts not only as a capping agent, but also as a fluorescent imaging agent. The nanoassembly was activated by histidine‐based replacement, leading to release of drug molecules encapsulated in the nanopores into the bulk solution. The fluorescent imaging functionality would allow noninvasive tracking of the nanoparticles in the body. By combining the drug delivery with cell‐imaging capability, these nanoparticles may provide valuable multifunctional nanoplatforms for biomedical applications.  相似文献   
137.
Mesoporous nanoparticles composed of γ‐Al2O3 cores and α‐Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ‐Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide‐angle XRD, energy‐dispersive X‐ray spectroscopy, and elemental mapping by ultrahigh‐resolution (UHR) TEM and X‐ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g?1 and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self‐aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse‐reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide‐angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one‐pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.  相似文献   
138.
We have demonstrated a rapid and general strategy to synthesize novel three‐dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as‐prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as‐synthesized three‐dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well‐defined sponge‐like network, large‐scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen‐gas sensors.  相似文献   
139.
The preparation of a new capped silica mesoporous material, Rh‐Azo‐S , for on‐command delivery applications in the presence of target enzymes is described. The material consists of nanometric mesoporous MCM‐41‐like supports loaded with Rhodamine B and capped with an azopyridine derivative. The material was designed to show “zero delivery” and to display a cargo release in the presence of reductases and esterases, which are usually present in the colon, mainly due to intestinal microflora. The opening and cargo release of Rh‐Azo‐S in vitro studies were assessed and seen to occur in the presence of these enzymes, whereas no delivery was noted in the presence of pepsine. Moreover, Rh‐Azo‐S nanoparticles were used to study controlled Rhodamine B dye delivery in intracellular media. HeLa cells were employed for testing the “non”‐toxicity of nanoparticles. Moreover, delivery of the dye in these cells, through internalization and enzyme‐mediated gate opening, was confirmed by confocal microscopy. Furthermore, the nanoparticles capped with the Azo group and loaded with a cytotoxic camptothecin ( CPT ) were also prepared (solid CPT‐Azo‐S ) and used as delivery nanodevices in HeLa cells. When this solid was employed, the cell viability decreased significantly due to internalization of the nanoparticles and delivery of the cytotoxic agent.  相似文献   
140.
采用软模板法制备了氮化钨-钨/掺氮有序介孔碳复合材料(WN-W/NOMC),作为一种高比表面积且价格低廉的阴极氧还原反应催化剂。通过适量添加尿素来改变复合材料中的氮含量,在掺氮量为7%(w/w)时,实验发现材料能够保持完整有序介孔结构,测试其比表面积高达835 m2·g-1,透射电子显微镜(TEM)测试结果显示其催化颗粒均匀地分散在氮掺杂有序介孔碳载体上。在O2饱和的0.1 mol·L-1 KOH溶液中测试了材料的氧还原催化性能(ORR),显示其起始电位为0.87 V(vs RHE),极限电流密度为4.49 mA·cm-2,氧还原反应的转移电子数为3.4,接近于20%(w/w)商业Pt/C的3.8,说明该材料表现出近似4电子的氧还原反应途径。研究结果表明,WN-W/NOMC的催化性能虽然稍弱于商业铂碳(0.99 V,5.1 mA·cm-2),但其具有远超铂碳的循环稳定性和耐甲醇毒化能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号