首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1513篇
  免费   338篇
  国内免费   532篇
化学   2259篇
晶体学   14篇
力学   5篇
综合类   7篇
物理学   98篇
  2024年   5篇
  2023年   12篇
  2022年   47篇
  2021年   72篇
  2020年   114篇
  2019年   88篇
  2018年   74篇
  2017年   77篇
  2016年   92篇
  2015年   159篇
  2014年   132篇
  2013年   194篇
  2012年   177篇
  2011年   138篇
  2010年   142篇
  2009年   140篇
  2008年   124篇
  2007年   112篇
  2006年   106篇
  2005年   106篇
  2004年   73篇
  2003年   66篇
  2002年   32篇
  2001年   30篇
  2000年   27篇
  1999年   20篇
  1998年   14篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
排序方式: 共有2383条查询结果,搜索用时 15 毫秒
91.
92.
Pharmaceutical antibiotics are not easily removed from water by conventional water‐treatment technologies and have been recognized as new emerging pollutants. Herein, we report the synthesis of clickable azido periodic mesoporous organosilicas (PMOs) and their use as adsorbents for the adsorption of antibiotics. Ethane‐bridged PMOs, functionalized with azido groups at different densities, were synthesized by the co‐condensation of 1,2‐bis(trimethoxysilyl)ethane (BTME) and 3‐azidopropyltrimethoxysilane (AzPTMS), in the presence of nonionic‐surfactant triblock‐copolymer P123, in an acidic medium. Four different alkynes were conjugated to azide‐terminated PMOs by means of an efficient click reaction. The clicked PMOs showed improved adsorption capacity (241 μg g?1) for antibiotics (ciprofloxacin hydrochloride) compared with azido‐functionalized PMOs because of the enhanced π–π stacking interactions. These results indicate that click reactions can introduce multifunctional groups onto PMOs, thus demonstrating the great potential of PMOs for environmental applications.  相似文献   
93.
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering.  相似文献   
94.
Development of a new method to synthesize nanoporous metal oxides with highly crystallized frameworks is of great interest because of their wide use in practical applications. Here we demonstrate a thermal decomposition of metal‐cyanide hybrid coordination polymers (CPs) to prepare nanoporous metal oxides. During the thermal treatment, the organic units (carbon and nitrogen) are completely removed, and only metal contents are retained to prepare nanoporous metal oxides. The original nanocube shapes are well‐retained even after the thermal treatment. When both Fe and Co atoms are contained in the precursors, nanoporous Fe?Co oxide with a highly oriented crystalline framework is obtained. On the other hand, when nanoporous Co oxide and Fe oxide are obtained from Co‐ and Fe‐contacting precursors, their frameworks are amorphous and/or poorly crystallized. Single‐crystal‐like nanoporous Fe?Co oxide shows a stable magnetic property at room temperature compared to poly‐crystalline metal oxides. We further extend this concept to prepare nanoporous metal oxides with hollow interiors. Core‐shell heterostructures consisting of different metal‐cyanide hybrid CPs are prepared first. Then the cores are dissolved by chemical etching using a hydrochloric acid solution (i.e., the cores are used as sacrificial templates), leading to the formation of hollow interiors in the nanocubes. These hollow nanocubes are also successfully converted to nanoporous metal oxides with hollow interiors by thermal treatment. The present approach is entirely different from the surfactant‐templating approaches that traditionally have been utilized for the preparation of mesoporous metal oxides. We believe the present work proves a new way to synthesize nanoporous metal oxides with controlled crystalline frameworks and architectures.  相似文献   
95.
A systematic study on the growth of Cr2O3 in three‐dimensional cubic ordered mesoporous silica (KIT‐6) and its replication through nanocasting is reported. By changing the loading time and amount of precursor, the size and shape of the obtained replica could be controlled to some extent. More interestingly, in contrast to previously published studies, when KIT‐6 with an aging temperature of 100 °C, which has a high degree of interconnectivity, was used as a hard template, a cubic ordered mesoporous Cr2O3 replica with an open uncoupled subframework structure and reduced symmetry was obtained. Formation of a replica with different symmetry and uncoupled subframework structure is not only related to the degree of interconnectivity of the parent, but also strongly depends on the type of metal oxide and its growth mechanism in the silica template. Nanocasting of Cr2O3 with a low loading results in a replica with monomodal pore size distribution that has same symmetry as the hard template, whereas increasing the loading amount alters the symmetry of the replica and yields a replica with bimodal distribution.  相似文献   
96.
New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol‐gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper‐catalysed azide–alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1) the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol‐gel process; 2) the precursor is first subjected to the sol‐gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne‐ or azide‐containing precursors, and thereafter, functionalised with complementary model azide‐ or alkyne‐containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials.  相似文献   
97.
Nuclear magnetic resonance (NMR) relaxation times are shown to provide a unique probe of adsorbate–adsorbent interactions in liquid‐saturated porous materials. A short theoretical analysis is presented, which shows that the ratio of the longitudinal to transverse relaxation times (T1/T2) is related to an adsorbate–adsorbent interaction energy, and we introduce a quantitative metric esurf (based on the relaxation time ratio) characterising the strength of this surface interaction. We then consider the interaction of water with a range of oxide surfaces (TiO2 anatase, TiO2 rutile, γ‐Al2O3, SiO2, θ‐Al2O3 and ZrO2) and show that esurf correlates with the strongest adsorption sites present, as determined by temperature programmed desorption (TPD). Thus we demonstrate that NMR relaxation measurements have a direct physical interpretation in terms of the characterisation of activation energy of desorption from the surface. Further, for a series of chemically similar solid materials, in this case a range of oxide materials, for which at least two calibration values are obtainable by TPD, the esurf parameter yields a direct estimate of the maximum activation energy of desorption from the surface. The results suggest that T1/T2 measurements may become a useful addition to the methods available to characterise liquid‐phase adsorption in porous materials. The particular motivation for this work is to characterise adsorbate–surface interactions in liquid‐phase catalysis.  相似文献   
98.
A selective release system was demonstrated with a dual‐cargo loaded MSNs. When stimulated by different signals (UV or H+), this system could selectively release different kinds of cargoes individually. Furthermore, this system has been used to provide a combination of chemotherapy and biotherapy for cancer treatment. This controlled release system could be an important step in the development of more effective and sophisticated nanomedicine and nanodevices, due to the possibility of selective release of a complex multi‐drug.  相似文献   
99.
Mesoporous SnO microspheres were synthesised by a hydrothermal method using NaSO4 as the morphology directing agent. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high‐resolution transmission electron microscopy (HRTEM) analyses showed that SnO microspheres consist of nanosheets with a thickness of about 20 nm. Each nanosheet contains a mesoporous structure with a pore size of approximately 5 nm. When applied as anode materials in Na‐ion batteries, SnO microspheres exhibited high reversible sodium storage capacity, good cyclability and a satisfactory high rate performance. Through ex situ XRD analysis, it was found that Na+ ions first insert themselves into SnO crystals, and then react with SnO to generate crystalline Sn, followed by Na–Sn alloying with the formation of crystalline NaSn2 phase. During the charge process, there are two slopes corresponding to the de‐alloying of Na–Sn compounds and oxidisation of Sn, respectively. The high sodium storage capacity and good electrochemical performance could be ascribed to the unique hierarchical mesoporous architecture of SnO microspheres.  相似文献   
100.
Here it is demonstrated that mesoporous silicas (MPSs) can be used as effective “topological crosslinkers” for poly(N‐isopropylacrylamide) (PNIPA) hydrogels to improve the mechanical property. Three‐dimensional bicontinuous mesporous silica is found to effectively reinforce the PNIPA hydrogels, as compared to nonporous silica and two‐dimensional hexagonally ordered mesoporous silica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号