首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1748篇
  免费   184篇
  国内免费   96篇
化学   1881篇
晶体学   2篇
力学   26篇
综合类   2篇
数学   10篇
物理学   107篇
  2024年   3篇
  2023年   14篇
  2022年   41篇
  2021年   41篇
  2020年   90篇
  2019年   46篇
  2018年   47篇
  2017年   39篇
  2016年   86篇
  2015年   94篇
  2014年   81篇
  2013年   86篇
  2012年   76篇
  2011年   98篇
  2010年   89篇
  2009年   116篇
  2008年   138篇
  2007年   96篇
  2006年   114篇
  2005年   105篇
  2004年   89篇
  2003年   69篇
  2002年   55篇
  2001年   34篇
  2000年   22篇
  1999年   31篇
  1998年   30篇
  1997年   28篇
  1996年   42篇
  1995年   22篇
  1994年   19篇
  1993年   27篇
  1992年   16篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   10篇
  1986年   3篇
  1984年   2篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有2028条查询结果,搜索用时 15 毫秒
31.
32.
Synchrotron radiation-based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio-molecular phenomena including folding-mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near-THz 400–40 cm−1 range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature-dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane-induced and folding-mediated activity of AMPs. The far-FTIR study offers a direct and information-rich probe of membrane-related antimicrobial interactions.  相似文献   
33.
Lipids regulate a wide range of biological activities. Since their local concentrations are tightly controlled in a spatiotemporally specific manner, the simultaneous quantification of multiple lipids is essential for elucidation of the complex mechanisms of biological regulation. Here, we report a new method for the simultaneous in situ quantification of two lipid pools in mammalian cells using orthogonal fluorescent sensors. The sensors were prepared by incorporating two environmentally sensitive fluorophores with minimal spectral overlap separately into engineered lipid‐binding proteins. Dual ratiometric analysis of imaging data allowed accurate, spatiotemporally resolved quantification of two different lipids on the same leaflet of the plasma membrane or a single lipid on two opposite leaflets of the plasma membrane of live mammalian cells. This new imaging technology should serve as a powerful tool for systems‐level investigation of lipid‐mediated cell signaling and regulation.  相似文献   
34.
We report a methodology to calculate the free energy of a shape transformation in a lipid membrane directly from a molecular dynamics simulation. The bilayer need not be homogeneous or symmetric and can be atomically detailed or coarse grained. The method is based on a collective variable that quantifies the similarity between the membrane and a set of predefined density distributions. Enhanced sampling of this “Multi-Map” variable re-shapes the bilayer and permits the derivation of the corresponding potential of mean force. Calculated energies thus reflect the dynamic interplay of atoms and molecules, rather than postulated effects. Evaluation of deformations of different shape, amplitude, and range demonstrates that the macroscopic bending modulus assumed by the Helfrich–Canham model is increasingly unsuitable below the 100-Å scale. In this range of major biological significance, direct free-energy calculations reveal a much greater plasticity. We also quantify the stiffening effect of cholesterol on bilayers of different composition and compare with experiments. Lastly, we illustrate how this approach facilitates analysis of other solvent reorganization processes, such as hydrophobic hydration. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
35.
Various anion exchange membranes containing the 4,4′-bipyridine moiety as anion exchange groups were prepared from membranous copolymers of chloromethylstyrene and divinylbenzene and membranes of chloromethylated polysulfone and 4,4′-bipyridine. After evaluating the electrochemical properties of the obtained anion exchange membranes, the effect of membrane species on the generation of a photovoltage was examined by irradiation using a xenon lamp. The membranes swelled with ethylene glycol were clamped between two ITO electrodes and sealed by adhesive. The generated photovoltage and photocurrent from about a 120 μm thick membrane were about 80 mV and 400 nA, respectively, in a 200K Ω load resistance, though dependent of membrane species. The voltage decreased with increasing crosslinking by the divinylbenzene in the copolymer membranes. The effect of counter ion species on the voltage was examined and a chloride ion form of membrane showed the highest photovoltage. The membranes with different thicknesses, which were prepared from polysulfone derivatives, were evaluated and the voltage decreased with decreasing thickness. Even a porous membrane from polysulfone derivatives showed a photovoltage though a porous membrane in which a methyl viologen ethylene glycol solution had been impregnated did not have a stable voltage. Also, the anion exchange membrane containing the benzyl trimethylammonium moiety, which is the conventional anion exchange groups, did not show a high and stable photovoltage upon photoirradiation. © 1996 John Wiley & Sons, Inc.  相似文献   
36.
The structure and some physico-chemical properties of radiation grafted FEP-g-polystyrenesulfonic acid proton exchange membranes were studied as a function of the degree of grafting. The distribution of grafted polymer across the membrane thickness was obtained from microprobe measurements. It was found that for low levels of grafting (ca. 3%), polystyrene chains are located near the membrane surface only, and the interior of the membrane remains ungrafted. With the increasing degree of grafting, polystyrene chains were incorporated into the interior of the membrane as well. An almost homogeneous distribution of grafts in the membrane was obtained at a graft level of > 13%. The influence of the degree of grafting on membrane properties, such as ion exchange capacity, swelling, and specific resistivity was studied. Three different states of water, viz., freezing free, freezing bound, and nonfreezing water have been identified in noncrosslinked membranes. However, the nature and the amount of crosslinker had a profound influence on the states of water in a membrane. © 1996 John Wiley & Sons, Inc.  相似文献   
37.
Natural polymers have emerged as promising candidates for the sustainable development of materials in areas ranging from food packaging and biomedicine to energy storage and electronics. In tandem, there is a growing interest in the design of advanced materials devised from naturally abundant and renewable feedstocks, in alignment with the principles of Green Chemistry and the 2030 Agenda for Sustainable Development. This review aims to highlight some examples of the research efforts conducted at the Research Team BioPol4fun, Innovation in BioPolymer-based Functional Materials and Bioactive Compounds, from the Portuguese Associate Laboratory CICECO–Aveiro Institute of Materials at the University of Aveiro, regarding the exploitation of natural polymers (and derivatives thereof) for the development of distinct sustainable biobased materials. In particular, focus will be given to the use of polysaccharides (cellulose, chitosan, pullulan, hyaluronic acid, fucoidan, alginate, and agar) and proteins (lysozyme and gelatin) for the assembly of composites, coatings, films, membranes, patches, nanosystems, and microneedles using environmentally friendly strategies, and to address their main domains of application.  相似文献   
38.
39.
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.  相似文献   
40.
Temperature sensors play a significant role in biology, chemistry, and engineering, especially those that can work accurately in a noninvasive manner. We adopted a photoinduced post-synthetic copolymerization strategy to realize a membranous ratiometric luminescent thermometer based on the emissions of two lanthanide ions. This novel mixed-lanthanide polyMOF membrane exhibits not only the integrity and temperature sensing behaviour of the Ln-MOF powder but also excellent mechanical properties, such as flexibility, elasticity, and processability. Moreover, the polyMOF membrane shows remarkable stability under harsh conditions, including high humidity, strong acid and alkali (pH 0–14), which allowed the mapping of temperature distributions in extreme circumstances. This work highlights a simple strategy for polyMOF membrane formation and pushes forward the further practical application of Ln-MOF-based luminescent thermometers in various fields and conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号