全文获取类型
收费全文 | 1748篇 |
免费 | 184篇 |
国内免费 | 96篇 |
专业分类
化学 | 1881篇 |
晶体学 | 2篇 |
力学 | 26篇 |
综合类 | 2篇 |
数学 | 10篇 |
物理学 | 107篇 |
出版年
2024年 | 3篇 |
2023年 | 14篇 |
2022年 | 41篇 |
2021年 | 41篇 |
2020年 | 90篇 |
2019年 | 46篇 |
2018年 | 47篇 |
2017年 | 39篇 |
2016年 | 86篇 |
2015年 | 94篇 |
2014年 | 81篇 |
2013年 | 86篇 |
2012年 | 76篇 |
2011年 | 98篇 |
2010年 | 89篇 |
2009年 | 116篇 |
2008年 | 138篇 |
2007年 | 96篇 |
2006年 | 114篇 |
2005年 | 105篇 |
2004年 | 89篇 |
2003年 | 69篇 |
2002年 | 55篇 |
2001年 | 34篇 |
2000年 | 22篇 |
1999年 | 31篇 |
1998年 | 30篇 |
1997年 | 28篇 |
1996年 | 42篇 |
1995年 | 22篇 |
1994年 | 19篇 |
1993年 | 27篇 |
1992年 | 16篇 |
1991年 | 7篇 |
1990年 | 5篇 |
1989年 | 9篇 |
1988年 | 4篇 |
1987年 | 10篇 |
1986年 | 3篇 |
1984年 | 2篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有2028条查询结果,搜索用时 12 毫秒
111.
112.
A series of block sulfonated poly(arylene ether ketone) (SPAEK) copolymers with different block lengths and ionic contents were synthesized by a two‐stage process. The morphology of these block SPAEK copolymers was investigated by various methods, such as differential scanning calorimetry (DSC), transmission electron microscope (TEM), and small angle X‐ray scattering (SAXS). Dark colored ionic domains of hundreds of nanometers spreading as a cloud‐like belt were observed in TEM images. The sizes of the ionic domains as a function of block copolymer composition were determined from SAXS curves. The results for the evolution of ionic domains revealed that the block copolymers exhibited more clearly phase‐separated microstructure with increasing ionic contents and hydrophobic sequence lengths. Proton conductivity is closely related to the microstructure, especially the presence of large interconnected ionic domains or ionic channels. Block SPAEK membranes have interconnected ionic clusters to provide continuous hydrophilic channels, resulting in higher proton conductivity. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
113.
Takefumi Mikami Kenji Miyatake Masahiro Watanabe 《Journal of polymer science. Part A, Polymer chemistry》2011,49(2):452-464
A series of block copoly(arylene ether)s containing pendant superacid groups were synthesized, and their properties were investigated for fuel cell applications. Two series of telechelic oligomers, iodo‐substituted oligo(arylene ether ketone)s and oligo(arylene ether sulfone)s, were synthesized. The degree of oligomerization and the end groups were controlled by changing the feed ratio of the monomers. The nucleophilic substitution polymerization of the two oligomers provided iodo‐substituted precursor block copolymers. The iodo groups were converted to perfluorosulfonic acid groups via the Ullmann coupling reaction. The high degree of perfluorosulfonation (up to 83%) was achieved by optimizing the reaction conditions. Tough and bendable membranes were prepared by solution casting. The ionomer membranes exhibited characteristic hydrophilic/hydrophobic phase separation with large hydrophilic clusters (ca. 10 nm), which were different from that of our previous random copolymers with similar molecular structure. The block copolymer structure was found to be effective in improving the proton‐conducting behavior of the superacid‐modified poly(arylene ether) ionomer membranes without increasing the ion exchange capacity (IEC). The highest proton conductivity was 0.13 S/cm at 80 °C, 90% relative humidity, for the block copolymer ionomer membrane with IEC = 1.29 mequiv/g. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
114.
Emilie Groison Salim Adjili Alice Ferrand Frdric Lortie Daniel Portinha Nathalie Sintes‐Zydowicz 《Macromolecular rapid communications》2011,32(6):491-496
This contribution presents a new strategy for preparing nanocapsules with a shell made of a supramolecular polymer which repeating units are held together by reversible interactions rather than covalent bonds. These nanocapsules were prepared in classical miniemulsion through interfacial addition reaction of a diisocyanate (IPDI) and a monoamine (iBA), forming low‐molecular weight bis‐ureas moieties which are strong self‐complementary interacting molecules through hydrogen‐bonding. The nanocapsules present a diameter around 100 nm, and MALDI‐TOF MS and 1H NMR analyses confirm the expected molecular characteristics for the shell. This strategy opens the scope of a new type of nanomaterials exhibiting stimuli‐responsiveness due to the reversible interaction linking the repeating units.
115.
This paper reports a new polyimide design with high internal free volume elements for fast mass transport simultaneously with high selectivity. Here, we show that the polymer design using a three‐dimensional rigid molecular structure having internal void space can lead to the formation of high fractional free volume with proper cavity size to separate small gas molecules with high selectivities as high permeabilities. These findings could strongly impact emerging gas separation applications using polymeric membranes such as natural gas purification and biogas purification to get clean energy resources.
116.
Petr Uchytil Oliver Schramm Andreas Seidel-Morgenstern 《Journal of membrane science》2000,170(2):215-224
Experimental and theoretical results of studying gas permeation through porous membranes are presented. In order to mimic an asymmetric membrane two porous ceramic disks with different pore radii were arranged in series. Besides the possibility to perform conventional permeation measurements, the applied experimental setup permits the determination of the pressure at the interface between the two discs. To predict the performance of the asymmetric structure, in preliminary experiments structure parameters were determined for both membranes separately. For the same total pressure difference across the two-disk arrangement, different interlayer pressures and fluxes were predicted and detected experimentally depending on the flow direction. 相似文献
117.
118.
Su‐Juan Li Chen Wang Zeng‐Qiang Wu Jing‐Juan Xu Prof. Xing‐Hua Xia Prof. Hong‐Yuan Chen Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(33):10186-10194
To understand the fundamentals of enzymatic reactions confined in micro‐/nanosystems, the construction of a small enzyme reactor coupled with an integrated real‐time detection system for monitoring the kinetic information is a significant challenge. Nano‐enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real‐time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass‐transport‐related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano‐enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50 μL min?1), the enzymatic reaction kinetics became the rate‐determining step. This change resulted in the decrease in the conversion efficiency of the nano‐enzyme reactor and the apparent Michaelis–Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis. 相似文献
119.
Ying‐Ling Liu Chun‐Chieh Han Ta‐Chin Wei Yung Chang 《Journal of polymer science. Part A, Polymer chemistry》2010,48(10):2076-2083
This work reports the surface‐initiated atom transfer radical polymerization (ATRP) from hydrogen plasma‐treated porous poly(tetrafluoroethylene) (PTFE) membranes using the C? F groups as initiators. Hydrogen plasma treatment on PTFE membrane surfaces changes their chemical environment through defluorination and hydrogenation reactions. With the hydrogen plasma treatment, the C? F groups of the modified PTFE membrane surface become effective initiators of ATRP. Surface‐initiated ATRP of poly(ethylene glycol) methacrylate (PEGMA) is carried out to graft PPEGMA chains to PTFE membrane surfaces. The chain lengths of poly(PEGMA) (PPEGMA) grafted on PTFE surfaces increase with increasing the reaction time of ATRP. Furthermore, the chain ends of PPEGMA grown on PTFE membrane surfaces then serve as macroinitiators for the ATRP of N‐isopropylacrylamide (NIPAAm) to build up the PPEGMA‐b‐PNIPAAm block copolymer chains on the PTFE membrane surfaces. The chemical structures of the modified PTFE membranes are characterized using X‐ray photoelectron spectroscopy. The modification increases the surface hydrophilicity of the PTFE membranes with reductions in their water‐contact angles from 120° to 60°. The modified PTFE membranes also show temperature‐responsive properties and protein repulsion features owing to the presence of PNIPAAM and PPEGMA chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2076–2083, 2010 相似文献
120.
Synthesis and proton conductivity studies of polystyrene‐based triazole functional polymer membranes
Şehmus Özden Sevim Ünügür Çelik Ayhan Bozkurt 《Journal of polymer science. Part A, Polymer chemistry》2010,48(22):4974-4980
In this study, poly(vinylbenzylchloride) (PVBC) was produced by free‐radical polymerization of 4‐vinylbenzylchloride, and then it was functionalized with 3‐amino‐1,2,4‐triazole (ATri) and 1H‐1,2,4‐triazole (Tri). The composition of the polymers was verified by elemental analysis, and the structure was characterized by Fourier transform infrared and 13C‐nuclear magnetic resonance spectra. PVBC was modified by ATri with 68% and Tri with 50% yield. The polymers were doped with trifluoromethanesulfonic acid (TA) at various molar ratios, X = 0.5, 1, 2, and 3 with respect to aminotriazole and triazole units. Proton transfer from TA to the triazole rings was proved with Fourier transform infrared spectroscopy. Thermogravimetric analysis showed that the samples are thermally stable up to approximately 200 °C. Differential scanning calorimetry results illustrated the homogeneity of the materials. Under anhydrous conditions, PVBCATri3TA and PVBCTri3TA showed highest proton conductivity of 0.086 and 0.042 S/cm, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献