首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   99篇
  国内免费   115篇
化学   706篇
晶体学   93篇
力学   162篇
综合类   5篇
数学   15篇
物理学   214篇
  2023年   10篇
  2022年   17篇
  2021年   33篇
  2020年   24篇
  2019年   27篇
  2018年   21篇
  2017年   35篇
  2016年   40篇
  2015年   28篇
  2014年   40篇
  2013年   83篇
  2012年   40篇
  2011年   59篇
  2010年   50篇
  2009年   44篇
  2008年   42篇
  2007年   76篇
  2006年   43篇
  2005年   52篇
  2004年   68篇
  2003年   41篇
  2002年   36篇
  2001年   26篇
  2000年   39篇
  1999年   28篇
  1998年   20篇
  1997年   29篇
  1996年   20篇
  1995年   15篇
  1994年   20篇
  1993年   15篇
  1992年   11篇
  1991年   7篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   4篇
  1985年   11篇
  1984年   11篇
  1983年   2篇
  1982年   6篇
  1981年   6篇
排序方式: 共有1195条查询结果,搜索用时 296 毫秒
31.
The aminolysis of poly(styrene-co-methyl acrylate) (SMA) by octadecylamine in solution and in the melt has been reported in Part I. We now have studied the aminolysis of poly(ethylene-co-methyl acrylate) (EMA) with the same amine in the melt and compared the two sets of data in this paper. With EMA, the data confirmed and precised the catalytic mechanism proposed in Part I. The best tautomeric catalysts are the ones which form an eight-atom ring structure with the ester and amine groups. With EMA aminolysis is faster than with SMA because of the steric hindrance of phenyl groups in SMA. But EMA aminolysis remains a rather slow reaction. In a corotating twin-screw extruder the conversion was only around 4% at 220°C with a mean residence time of 150 s. It was also shown that the EMA/octadecylamine/catalyst system, like the SMA system, is homogeneous in the molten state at temperatures around 200°C.  相似文献   
32.
The thermal properties, i.e., heat capacity, enthalpy, entropy, and Gibbs function, and the transition behavior of the copolymer system of 4-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid have been studied based on differential scanning calorimetry. The heat capacities of the glass, crystal, and anisotropic melt are shown to be largely additive on a molar basis. Additivity is lost in the two transition regions, glass transition and disordering transition. Isothermal crystallization experiments on the copolymers revealed the existence of two types of crystals which melt at high temperature (fast-grown crystals) and low temperature (slowly grown crystals). The ATHAS computation method is used to bring heat capacities of the solid state into agreement with approximate frequency spectra. The changes in heat capacity at the glass transitions occur at 434°K for the poly(oxy-1,4-benzoyl) [33.2 J/(K mol)] and at 420°K for poly(oxy-2,6-naphthoyl) [46.5 J/(K mol)]. The copolymers have a transition range of above 100°K. The anisotropic melt is linked to the well-known condis state of poly(oxy-1,4-benzoyl) by a continuous changes in disorder and mobility without an additional first-order transition.  相似文献   
33.
Extrudate swell behaviors of polystyrene (PS) and linear low‐density polyethylene (LLDPE) melts in a dual channel die, having mixed circular/slit flow channels, in a constant shear rate rheometer were examined. The extrudate swell ratio for PS melt was observed to be higher than that for LLDPE melt for all cases, this being associated with the differences in molecular structures that could be described in terms of power law indexes and secondary flows near the die entrance. In single channel die, the extrudate swell of both PS and LLDPE melts in circular flow channel die was greater than that in slit flow channel, whereas, in dual channel die the slit channel exhibited a higher extrudate swell ratio, the results being explained by revealing the flow patterns of the melt in the barrel and die of the rheometer. It was found that the dimensionless size of the vortex flows near the entrance, and the extent of disentanglement of molecular chains on entering the die were the important factors for the differences in the extrudate swell ratios of the melts at the die exit influenced by the die designs used. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
34.
Superheated water (shH2O) is investigated as a process aid in conventional aliphatic polyamide (PA) systems. The polymers investigated include PA 6 (PA6), PA 6,6 (PA66), PA 6,12 (PA612), and PA 12 (PA12). It is shown that the PA melting and crystallization temperatures are significantly reduced when exposed to shH2O. For example, the melting temperature of PA6 is depressed from 206 to 153 °C in the presence of shH2O. A relationship between amide group density and thermal transition temperature reduction is observed. Processing these materials in shH2O has led to a variety of materials ranging from low‐density foams to higher density locally anisotropic foamed morphologies. In situ observations of PAs melting in the presence of shH2O are performed using a specially designed reactor. Results from these experiments are used to estimate the diffusion coefficient of shH2O in PA6. Finally, low‐temperature extrusion is performed with PA6 and shH2O at temperatures as low as 180 °C and mixture viscosity is estimated. A 20‐fold depression in the melt viscosity of PA6 is observed at 240 °C with shH2O. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 803–813  相似文献   
35.
This work extends our previous understanding concerning the nonlinear responses of entangled polymer solutions and melts to large external deformation in both simple shear and uniaxial extension. Many similarities have recently been identified for both step strain and startup continuous deformation, including elastic yielding, i.e., chain disentanglement after cessation of shear or extension, and emergence of a yield point during startup deformation that involves a deformation rate in excess of the dominant molecular relaxation rate. At a sufficiently high constant Hencky rate, uniaxial extension of an entangled melt is known to produce window-glass-like rupture. The present study provides evidence against the speculation that chain entanglements tie up into "dead knots" in constant-rate extension because of the exponentially growing chain stretching with time. In particular, it is shown that even Instron-style tensile stretching, i.e., extending a specimen by applying a constant velocity on both ends, results in rupture. Yet, in the same rate range, the same entangled melt only yields in simple shear, and the resulting shear banding is clearly not a characteristic of rupture. Thus, we conclude that chain entanglements respond to simple shear in the manner of yielding whereas uniaxial extension is rather effective in causing some entanglements to lock up, making it impossible for the entanglement network to yield at high rates.  相似文献   
36.
This paper reports a study on the effect of Al2O3 nanoparticles on the adhesion strength of steel-glass/epoxy composite joints bonded by a two-component structural acrylic adhesive. The addition of Al2O3 nanoparticles to the two-component acrylic adhesive led to a remarkable enhancement in the shear and tensile strength of the composite joints. The shear and tensile strength of the adhesive joints increased by addition of Al2O3 up to 1.5 wt%, which decreased by further addition of the nanofiller. Introduction of the nanoparticles caused a reduction in the peel strength of the joints. DSC analysis revealed that the glass transition temperature (Tg) of the adhesives rose by increasing the nanofiller content. The advancing water contact angle was decreased for adhesives containing nanoparticles. SEM micrographs indicated good dispersions of the Al2O3 nanoparticles within the acrylic matrix in the specimens with up to 1.5 wt% Al2O3 and revealed that addition of nanoparticles altered the fracture morphology from smooth to rough fracture surfaces.  相似文献   
37.
We report systematic studies on a homologous series of twin liquid crystalline (LC) molecules based on phenyl and naphthyl azobenzene ( PnP and NpnNp ) as well as segmented copolyesters based on them. The twin series had the structure azobenzene–oligooxyethylene–azobenzene, where the ethyleneoxy length was varied from 2 to 6 units. The LC properties of the twin series depended on the chemical structure of the azochromophore and also the length of the central oligooxyethylene segment. The PnP series exhibited smectic LC properties for n > three oligooxyethylene units. Conversely, NpnNp series exhibited spherulitic phases only for the shortest member – Np2Np . One non‐LC short spacer twin ( P2P ) and one LC long spacer twin ( P6P ) were incorporated as part of a main chain polyester composed of fully aliphatic segments of sebacate and di or tetraethylene glycol (DEG/TEG) units by melt polycondensation. Non‐LC P2P formed LC polymers even at low (5 mol %) incorporation in DEG‐based copolymers, whereas the LC‐ P6P could do so only at 30 mol % incorporation. The LC properties of the twin molecules as well as copolymers were studied using differential scanning calorimetry, polarized light microscopy (PLM) along with variable temperature wide angle X‐ray diffraction. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
38.
Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD) were employed to study the microstructure of self-reinforced high-density polyethylene (HDPE) prepared by conventional injection molding (CIM) and a low frequency vibration-assisted injection molding (VAIM). SEM micrographs following permanganic etching showed the self-reinforcement of HDPE is mainly due to the existence of shish-kebab morphology within the core region for VAIM-processed HDPE samples. Pronounced molecular alignment was identified by the WAXD data. An approximate 9% increase in the crystallinity was confirmed by DSC. Both preferred molecular orientation and increased crystallinity serve to yield stronger VAIM-processed injection moldings.  相似文献   
39.
A series of random polyesteramides (PEAs) within a range of molar composition from 90/10 to 10/90 were synthesized by a direct melt polycondensation of lactic acid and β-alanine. Their structures were fully characterized by NMR spectroscopy. The resulting copolymers are amorphous; they are thermally stable to temperatures up to 254°C, and present increasing glass transition temperatures at increasing amide content. The copolymers were also characterized by FTIR and viscosimetry measurements.  相似文献   
40.
The mutual diffusion process and interphase development taking place at the interface between disks of polystyrene (PS) and carbon black filled polystyrene (CB-PS) in the molten state were investigated by a small-amplitude, oscillatory shear, rheological technique. The rheological method was employed to probe the thermorheological complexity of these polymer disks. It was found that the dynamic complex shear modulus, G*(t), increased with the time of contact in two time regimes at a fixed frequency. The time of transition between the two regimes was observed to be close to the time needed for the transition from the Rouse mode to the reptation mode. The results showed that the content of the carbon black and the temperature affected the slope of the G*(t) – t curve. Scanning electron microscopy revealed the interface disappeared when the diffusion process was complete.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号