首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   4篇
化学   73篇
数学   1篇
物理学   11篇
  2022年   21篇
  2021年   14篇
  2020年   9篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
31.
The extensive development of radiopharmaceuticals towards early tumour detection and treatment has increased the demand for new ligands with higher tumour selectivity. Research has been done on the potential of the novel O,O′‐diethylethylenediamine‐N,N′‐di‐3‐propanoate ( L ) ligand as a radionuclide vehicle for tumour targeting. Under alkaline conditions, L hydrolyses and produces half ester ligand ( L' ) and diacid ligand ( L'' ), with characteristic donor atom array N,N,O. Ligand L was successfully labelled with 99mTc at pH = 9 by coordination with the octahedral fac‐[99mTc(CO)3(H2O)3]+ intermediate, forming the main radioproduct fac‐[99mTcL′(CO)3] (Tc1). The 99mTc complex showed a low lipophilic character (log P = 0.48) and low binding affinity to human serum albumin (2.51 ± 0.48%). In vitro stability studies in saline and human plasma, as well as challenge studies with cysteine and histidine, revealed high stability of the complex during 24 h. Biodistribution studies of Tc1 in female C57BL/6 mice bearing B16/F1 melanoma metastases showed significant tumour uptake: 9.81 ± 1.19%ID g?1 in the liver, 5.87 ± 0.54%ID g?1 in the lungs and 3.17 ± 0.33%ID g?1 in the ovary at 30 min post‐injection. Favourable physicochemical properties, satisfactory in vitro/in vivo stability and biodistribution profile in the experimental metastatic melanoma model indicate the possible application of the radiolabelled ligand in tumour diagnosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
32.
Melanoma is one of the most severe public health issues worldwide, not only because of the high number of cases but also for its poor prognosis in late stages. Therefore, early diagnosis and efficient treatment are key toward a future solution. However, melanoma is highly resistant to cytotoxicity in its metastatic form. In this context, a therapeutic strategy based on a targeted chemo‐photothermal nanotransporter for cytotoxic compounds is proposed. This approach comprises the use of core–multishell gold nanorods, coated with mesoporous silica and further covered with a thermosensitive polymer, which is vectorized for selective internalization in melanoma cells. The proposed nanoformulation is capable of releasing the transported cytotoxic compounds on demand, in response to near‐IR irradiation, with high selectivity and efficacy against malignant cells, even at low concentrations, thereby providing a new tool against melanoma disease.  相似文献   
33.
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), the major pungent ingredient of red pepper, has been reported to possess anti-carcinogenic and anti-mutagenic activities. In this study, the anti-migration activity of capsaicin on highly metastatic B16-F10 melanoma cells was investigated. Capsaicin significantly inhibited the migration of melanoma cells without showing obvious cellular cytotoxicity at low doses. This effect correlated with the down-regulation of phosphatidylinositol 3-kinase (PI3-K) and its downstream target, Akt. Although B16-F10 cell migration was increased by the PI3-K activator through the activation of Akt, these PI3-K activator-induced phenomena were attenuated by capsaicin. Moreover, capsaicin was found to significantly inhibit Rac1 activity in a pull-down assay. These results demonstrate that capsaicin inhibits the migration of B16-F10 cells through the inhibition of the PI3-K/Akt/Rac1 signal pathway. The present investigation suggests that capsaicin targets PI3-K/Akt/ Rac1-mediated cellular events in B16-F10 melanoma cells. Consequently, capsaicin administration should be considered an effective approach for the suppression of invasion and metastasis in malignant melanoma chemotherapy.  相似文献   
34.
周伟  吴玉章  边疆  贾正才  唐艳  邹丽云 《色谱》2001,19(5):449-453
 研究乙醇、甲醇两种常用溶剂系统对固相合成的黑色素瘤抗原基因 2 (MAGE 2 )的特定表位多肽 (171 179)异构的影响。分别运用乙醇、甲醇溶剂体系以及极性溶剂二甲基亚砜 (DMSO)作对照预处理固相合成的黑色素瘤抗原特异性MAGE 2表位多肽 (171~ 179) ,然后用反相高效液相色谱 /质谱联用技术 (RP HPLC/MS)对合成的表位多肽的m/z进行Q1正离子监测扫描分析 ,观察其在不同溶剂系统预处理下的异构情况 ,以选择合理的预处理条件。结果发现采用乙醇及甲醇溶样时MAGE 2表位多肽有异构体产生 ,极性溶剂DMSO溶样的表位多肽未有异构现象发生。  相似文献   
35.
Melanoma is the most dangerous and lethal form of skin cancer, due to its ability to spread to different organs if it is not treated at an early stage. Conventional chemotherapeutics are failing as a result of drug resistance and weak tumor selectivity. Therefore, efforts to evaluate novel molecules for the treatment of skin cancer are necessary. Antimicrobial peptides have become attractive anticancer agents because they execute their biological activity with features such as a high potency of action, a wide range of targets, and high target specificity and selectivity. In the present study, the antiproliferative activity of the synthetic peptide ΔM4 on A375 human melanoma cells and spontaneously immortalized HaCaT human keratinocytes was investigated. The cytotoxic effect of ΔM4 treatment was evaluated through propidium iodide uptake by flow cytometry. The results indicated selective toxicity in A375 cells and, in order to further investigate the mode of action, assays were carried out to evaluate morphological changes, mitochondrial function, and cell cycle progression. The findings indicated that ΔM4 exerts its antitumoral effects by multitarget action, causing cell membrane disruption, a change in the mitochondrial transmembrane potential, an increase of reactive oxygen species, and cell cycle accumulation in S-phase. Further exploration of the peptide may be helpful in the design of novel anticancer peptides.  相似文献   
36.
The strong therapeutic potential of an organotin(IV) compound loaded in nanostructured silica (SBA‐15pSn) is demonstrated: B16 melanoma tumor growth in syngeneic C57BL/6 mice is almost completely abolished. In contrast to apoptosis as the basic mechanism of the anticancer action of numerous chemotherapeutics, the important advantage of this SBA‐15pSn mesoporous material is the induction of cell differentiation, an effect unknown for metal‐based drugs and nanomaterials alone. This non‐aggressive mode of drug action is highly efficient against cancer cells but is in the concentration range used nontoxic for normal tissue. JNK (Jun‐amino‐terminal kinase)‐independent apoptosis accompanied by the development of the melanocyte‐like nonproliferative phenotype of survived cells indicates the extraordinary potential of SBA‐15pSn to suppress tumor growth without undesirable compensatory proliferation of malignant cells in response to neighboring cell death.  相似文献   
37.
Melanoma is a primary reason of death from skin cancer and associated with high lethality. Photothermal therapy (PTT) has been developed into a powerful cancer treatment technique in recent years. Here, we created a low‐cost and high‐performance PTT agent, Ag@TiO2 NPs, which possesses a high photothermal conversion efficiency of ≈65 % and strong near‐infrared (NIR) absorption about 808 nm. Ag NPs were synthesized using a two‐step method and coated with TiO2 to obtain Ag@TiO2 NPs by a facile sol‐gel method. Because of the oxide, Ag@TiO2 NPs exhibit remarkable high photothermal conversion efficiencies and biocompatibility in vivo and in vitro. Cytotoxicity and therapeutic efficiency of photothermal cytotoxicity of Ag@TiO2 NPs were tested in B16‐F10 cells and C57BL/6J mice. Under light irradiation, the elevated temperature causes cell death in Ag NPs‐treated (100 μg mL?1) cells in vitro (both p<0.01). In the case of subcutaneous melanoma tumor model, Ag@TiO2 NPs (100 μg mL?1) were injected into the tumor and irradiated with a 808 nm laser of 2 W cm?2 for 1 minute. As a consequence, the tumor volume gradually decreased by NIR laser irradiation with only a single treatment. The results demonstrate that Ag@TiO2 NPs are biocompatible and an attractive photothermal agent for cutaneous melanoma by local delivery.  相似文献   
38.
Cationic porphyrins have been widely used as tumor localizers in cancer therapies. When cationic porphyrins are flat they intercalate with double‐stranded DNA, duplexes of RNA or RNA–DNA. The antitumor activity of some cationic porphyrins depends on their interaction with human telomeric quadruplexes. Here, we report that noncationic meso‐(4‐aminophenyl)triphenylporphyrin (H2TPPNH2) ( 3 ) and its cobalt, copper, nickel, and zinc metallo derivatives ( 4 – 7 ) have DNA replication inhibitory activity in B16 mouse melanoma line cells. By means of quantification of 3HdTT radio‐labeled DNA, we observed that the nonplanar porphyrin [CoTPPNH2] has the highest activity against carcinogenic DNA replication. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
39.
In this investigation, a new terpyridine metal complex was developed as a probe for selective detection of ATP and imaging of melanoma cells. The probe takes advantage of the ability of the metal complex to be transformed to its imaging competent turn-on state through assembly with ATP.  相似文献   
40.
In this paper, a self‐delivery chimeric peptide PpIX‐PEG8‐KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self‐assembly into nanoparticles (designated as PPMA), this self‐delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti‐tumor immune response. On the other hand, the melanoma specific antigen (KVPRNQDWL) peptide could also activate the specific cytotoxic T cells for anti‐tumor immunity. Compared to immunotherapy alone, the combined photodynamic immunotherapy exhibits significantly enhanced inhibition of melanoma growth. Both in vitro and in vivo investigations confirm that PDT of PPMA has a positive effect on anti‐tumor immune response. This self‐delivery system demonstrates a great potential of this PDT amplified immunotherapy strategy for advanced or metastatic tumor treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号