首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6737篇
  免费   703篇
  国内免费   625篇
化学   2921篇
晶体学   103篇
力学   2160篇
综合类   84篇
数学   562篇
物理学   2235篇
  2024年   30篇
  2023年   70篇
  2022年   141篇
  2021年   151篇
  2020年   247篇
  2019年   210篇
  2018年   203篇
  2017年   287篇
  2016年   334篇
  2015年   270篇
  2014年   334篇
  2013年   768篇
  2012年   277篇
  2011年   322篇
  2010年   286篇
  2009年   322篇
  2008年   323篇
  2007年   365篇
  2006年   372篇
  2005年   314篇
  2004年   331篇
  2003年   282篇
  2002年   237篇
  2001年   197篇
  2000年   186篇
  1999年   175篇
  1998年   168篇
  1997年   150篇
  1996年   98篇
  1995年   120篇
  1994年   91篇
  1993年   60篇
  1992年   79篇
  1991年   63篇
  1990年   34篇
  1989年   27篇
  1988年   24篇
  1987年   17篇
  1986年   10篇
  1985年   19篇
  1984年   12篇
  1983年   3篇
  1982年   9篇
  1981年   9篇
  1980年   5篇
  1979年   13篇
  1978年   3篇
  1977年   3篇
  1971年   7篇
  1957年   2篇
排序方式: 共有8065条查询结果,搜索用时 15 毫秒
71.
Es wurde eine unter Betriebsverhältnissen anwendbare Prüfmethode für die Bestimmung der Verschleβeigenschaften von Verbrennungsmotoren mit Hilfe der Gammaspektrometrie der neutronenaktivierten Verschleiβprodukte ausgearbeitet und die die Lebensdauer begrenzende Wirkung des abrasiven Verschleiβes festgestellt. Durch Verbesserung der Luftfilterung konnte die potentielle Lebensdauer der Motoren gut angenähert, und es konnten die Verunreinigung des Schmieröls vermindert und die Dauer der Ölwechselperiode verdoppelt werden.  相似文献   
72.
《Composite Interfaces》2013,20(2):171-205
Sisal fibers have been used for the reinforcement of polypropylene matrix. The compatibilization between the hydrophilic cellulose fiber and hydrophobic PP has been achieved through treatment of cellulose fibers with sodium hydroxide, isocyanates, maleic anhydride modified polypropylene (MAPP), benzyl chloride and by using permanganate. Various fiber treatments enhanced the tensile properties of the composites considerably, but to varying degrees. The SEM photomicrographs of fracture surfaces of the treated composites clearly indicated the extent of fiber–matrix interface adhesion, fiber pullout and fiber surface topography. Surface fibrillation is found to occur during alkali treatment which improves interfacial adhesion between the fiber and PP matrix. The grafting of the fibers by MAPP enhances the tensile strength of the resulting composite. It has been found that the urethane derivative of polypropylene glycol and cardanol treatments reduced the hydrophilic nature of sisal fiber and thereby enhanced the tensile properties of the sisal–PP composites, as evident from the SEM photomicrographs of the fracture surface. The IR spectrum of the urethane derivative of polypropylene glycol gave evidence for the existence of a urethane linkage. Benzoylation of the fiber improves the adhesion of the fiber to the PP matrix. The benzoylated fiber was analyzed by IR spectroscopy. Experimental results indicated a better compatibility between benzoylated fiber and PP. The observed enhancement in tensile properties of permanganate-treated composites at a low concentration is due to the permanganate-induced grafting of PP on to sisal fibers. Among the various treatments, MAPP treatment gave superior mechanical properties. Finally, experimental results of the mechanical properties of the composite have been compared with theoretical predictions.  相似文献   
73.
《Composite Interfaces》2013,20(3):257-275
Viscous and elastomeric silicones have been applied as interlayers to carbon fibers in order to develop a tougher, micro-crack resistant, thermally stable polyimide (PMR-15) composite. Carbon fiber is continuously coated with very high molecular weight polydimethylsiloxane (PDMS) and polyvinyl-methylsiloxane (PVMS). Dynamic mechanical properties of the composites have been determined and compared with uncoated carbon fiber reinforced PMR-15 polyimide composites. The presence of the interlayer is shown by the appearance of a new relaxation peak. The peak temperature is found to be a good indication of the degree of the cure of the silicone elastomer. Comparison of the storage moduli of uncoated and coated carbon fiber composites at the service temperature range of the composites indicates that the presence of the silicone interlayer affects the shear moduli of the composites. Apparent activation energy of the α transition of the matrix in the modified composites varies with the amount of interlayer and composition in concert with the impact strength.  相似文献   
74.
Martin Hafok 《哲学杂志》2013,93(12):1857-1877
Nickel single crystals with different crystallographic orientations were deformed by high-pressure torsion. Special attention is devoted to examining the evolution of the micro-texture and microstructure. The initial crystal orientation was found to have a significant effect on the mechanical hardening and evolution of micro-texture at low and medium equivalent strains, whereas at very high strains no effect of the initial orientation was observed and the behaviour was very similar to a polycrystal. The evolution of micro-texture is in good qualitative agreement with the full constrained Taylor model. At very high equivalent strains the initial crystal orientation has no influence on micro-texture. At such strains, the hardening, the refinement of the structure and the texture reaches a saturation. The final micro-texture is explained by the change from one preferred crystallographic orientation to another.  相似文献   
75.
Flat-tip micro-indentation tests were performed on quenched and annealed polymer glasses at various loading speeds. The results were analyzed using an elasto-viscoplastic constitutive model that captures the intrinsic deformation characteristics of a polymer glass: a strain-rate dependent yield stress, strain softening and strain hardening. The advantage of this model is that changes in yield stress due to physical aging are captured in a single parameter. The two materials studied (polycarbonate (PC) and poly(methyl methacrylate) (PMMA)) were both selected for the specific rate-dependence of the yield stress that they display at room temperature. Within the range of strain rates experimentally covered, the yield stress of PC increases linearly with the logarithm of strain rate, whereas, for PMMA, a characteristic change in slope can be observed at higher strain rates. We demonstrate that, given the proper definition of the viscosity function, the flat-tip indentation response at different indentation speeds can be described accurately for both materials. Moreover, it is shown that the model captures the mechanical response on the microscopic scale (indentation) as well as on the macroscopic scale with the same parameter set. This offers promising possibilities of extracting mechanical properties of polymer glasses directly from indentation experiments.  相似文献   
76.
H.-J. Lee  B.D. Wirth 《哲学杂志》2013,93(9):821-841
A high number-density of nanometer-sized stacking fault tetrahedra are commonly found during irradiation of low stacking fault energy metals. The stacking fault tetrahedra act as obstacles to dislocation motion leading to increased yield strength and decreased ductility. Thus, an improved understanding of the interaction between gliding dislocations and stacking fault tetrahedra are critical to reliably predict the mechanical properties of irradiated materials. Many studies have investigated the interaction of a screw or edge dislocation with a stacking fault tetrahedron (SFT). However, atomistic studies of a mixed dislocation interaction with an SFT are not available, even though mixed dislocations are the most common. In this paper, molecular dynamics simulation results of the interaction between a mixed dislocation and an SFT in face-centered cubic copper are presented. The interaction results in shearing, partial absorption, destabilization or simple bypass of the SFT, depending on the interaction geometry. However, the SFT was not completely annihilated, absorbed or collapsed during a single interaction with a mixed dislocation. These observations, combined with simulation results of edge or screw dislocations, suggest that defect-free channel formation in irradiated copper is not likely by a single dislocation sweeping or destruction process, but rather by a complex mix of multiple shearing, partial absorption and defect cluster transportation that ultimately reduces the size of stacking fault tetrahedra within a localized region.  相似文献   
77.
This research employs two approaches to characterise the apparent structure observed in localised strain maps constructed from surface topography data acquired from AA5754-O sheet stock that was deformed in three in-plane stretching modes. The first uses a conventional two-point autocorrelation function (ACF), while the second uses the combination of the eigenvalue spectrum associated with each map and information theory. The results from the ACF analysis are inconclusive, implying that this technique lacks the sensitivity necessary to quantify the relationships between multi-point clustering and strain localisation. The information theory-based approach reveals that the relative spectral entropy increases monotonically, attains a maximum and then decreases sharply to the failure strain. This behaviour occurs in all three strain modes and results from two competing processes: one where the formation of structure is favourable and one where it is not. The crossover point is a clear indicator of the onset of critical strain localisation and, therefore, can be regarded as a precursor to failure because once the dominant process shifts, additional strain results in the precipitate formation of a critical strain localisation event.  相似文献   
78.
Ferritic steel with compositions 83.0Fe–13.5Cr–2.0Al–0.5Ti (alloy A), 79.0Fe–17.5Cr–2.0Al–0.5Ti (alloy B), 75.0Fe–21.5Cr–2.0Al–0.5Ti (alloy C) and 71.0Fe–25.5Cr–2.0Al–0.5Ti (alloy D) (all in wt%) each with a 1.0?wt% nano-Y2O3 dispersion were synthesized by mechanical alloying and consolidated by pulse plasma sintering at 600, 800 and 1000°C using a 75-MPa uniaxial pressure applied for 5?min and a 70-kA pulse current at 3?Hz pulse frequency. X-ray diffraction, scanning and transmission electron microscopy and energy disperse spectroscopy techniques have been used to characterize the microstructural and phase evolution of all the alloys at different stages of mechano-chemical synthesis and consolidation. Mechanical properties in terms of hardness, compressive strength, yield strength and Young's modulus were determined using a micro/nano-indenter and universal testing machine. All ferritic alloys recorded very high levels of compressive strength (850–2850?MPa), yield strength (500–1556?MPa), Young's modulus (175–250?GPa) and nanoindentation hardness (9.5–15.5?GPa), with up to 1–1.5 times greater strength than other oxide dispersion-strengthened ferritic steels (<1200?MPa). These extraordinary levels of mechanical properties can be attributed to the typical microstructure of uniform dispersion of 10–20-nm Y2Ti2O7 or Y2O3 particles in a high-alloy ferritic matrix.  相似文献   
79.
80.
The commercial aluminium alloy 5083 was processed via cryomilling to produce nanocrystalline (NC) powders with an average grain size of ~25–50?nm. The powders were subsequently degassed at 723 K (450°C), pre-heated and immediately quasi-isostatic (QI)-forged to produce a thermally stable bulk ultrafine grain (UFG) material having average grain size values ranging from 190 to 350?nm, depending on the processing conditions used. In this paper, the tensile properties and fracture behaviour of the bulk UFG material are presented and compared with the tensile properties of its conventionally processed counterpart. The specific influence of preheat temperature on strength and ductility of the alloy is briefly discussed. Three different pre-heat temperatures of 523, 623 and 723?K (250, 350 and 450°C) were chosen and used with the primary objective of controlling grain growth during forging. The influence of preheat temperature on tensile deformation and final fracture behaviour is highlighted. The macroscopic fracture modes of the bulk nanostructured material (BNM) prepared following three pre-heat temperatures are investigated. The microscopic mechanisms controlling tensile deformation and final fracture behaviour are discussed with regards to the intrinsic microstructural effects in the UFG alloy, nature of loading, and the kinetics and mechanisms of deformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号